SURVEYING INSTRUMENTS

SOKKIA FX-200 series

Functional X-ellence Station

本書の読み方

このたびは弊社製品をお買い上げいただき、ありがとうございます。

- この取扱説明書は、実際に機械を操作しながらお読みください。常に適切な取り扱いと、正しい操作でご 使用くださいますようお願いいたします。
- ●ホストコンピューターなどと接続することにより、コマンド操作で測定したり、プログラムモードのデー タを出力したりすることができます。制御コマンドや通信フォーマットの詳細を記した「コミュニケー ションマニュアル」については、最寄りの営業窓口にお問い合わせください。
- 扱いやすく、より良い製品をお届けするため、常に研究・開発を行っております。製品の外観および仕様は、改良のため、予告なく変更されることがありますので、あらかじめご了承ください。
- 本書の内容は予告なく変更することがありますので、あらかじめご了承ください。
- 掲載のイラストは、説明を分かりやすくするために、実際とは多少異なる表現がされている場合がありま す。あらかじめご了承ください。
- 本書はいつもお手元においてご活用ください。
- ●弊社は、本書に関し、日本国内における譲渡不能の非独占利用の権利をお客様に許諾し、お客様もご同意いただくものとします。
- 本書の全部または一部の無断複写複製を禁じます。(著作権法上の例外を除きます)
- お客様に本書の改変、改良、翻訳等の二次的著作物の作成および利用することについては許諾いたしません。

▶ 記号について

本書では、説明の中で次のような記号を使っています。

- 🗳 🥂 : 使用上の注意事項や、作業前に読んでいただきたい重要事項を示します。
- **『ア**: 関連する章(項)や参照していただきたい章(項)を示します。
- 備考 : 補足事項を示します。
- 🏼 :用語や測定方法の解説を示します。
- <測定>など:画面のタイトルを示します。
- 【測定】など:画面に表示されているソフトキーやウィンドウダイアログボックスのボタンなどを示しま す。
- (ESC) など: 操作パネルのキーを示します。
- 「設定」など:各画面に表示されている内容を示します。

▶ 本書の記述について

本書で使用している用語の定義や記載内容のルールは以下のとおりです。

- ・ 画面やイラストは「Bluetooth デバイス搭載製品」をもとにしています。
- 本書での画面は「距離分解能」を"1mm"に設定したときをもとにしています。「距離分解能」を"0.1 mm"に設定すると、距離や気象条件の小数点以下の入力桁数が記載の値よりも1桁増えます。

 『ア 距離分解能(最小距離表示)の設定:「20.1 観測条件」
- 本機(FX-200シリーズ)は、ソフトキーの配置などを変更することができます。本文中の操作や表示は、工場出荷時の設定で説明します。

 「了「20.6 ソフトキーのユーザー割り付け」
- ・ 各種測定の手順の説明を読む前に、「4. 製品概要」と「5. 基本操作」をよくお読みください。項目の選 択や数値等の入力については、「5.1 基本のキー操作」に詳しい説明があります。
- 測定手順は連続測定を設定した場合のものです。その他の測定方法については「備考」に記載がある場合がありますので、ご覧ください。
- 1999年10月1日より計量法が改正になりSI単位に移行されました。非SI単位を使用する場合はご注意ください。
- ・ KODAK は Kodak 社の登録商標です。
- ・ Bluetooth[®]は Bluetooth SIG, INC. の登録商標です。
- ・ Windows は米国 Microsoft Corporation の登録商標です。
- ・ その他、本書中の社名や商品名は各社の商標または登録商標です。

不要になったリチウムイオン電池は、貴重な資源 Li-ion を守るために廃棄しないでリチウムイオン電池リ サイクル協力店へお持ちください。

JSIMA規格に基づく測量機器の校正・検査認定制度

目次

1.	安全にお使いいただくために	.1
2.	使用上のお願い	.4
З.	レーザー製品を安全にお使いいただくために	.7
4.	製品概要	.9
	4.1 各部の名称	.9
	4.2 C= K備成	13
5.	基本操作	15
	5.1 基本のキー操作	15
	5.2 表示部とその操作 5.3 文字入力パネルによる文字入力	19 23
	5.4 スターキーモード	24
6.	USB メモリーの装着	28
7.	バッテリーの準備	29
	7.1 ハッテリーの充電	29 30
8.	機械の据え付け	31
	8.1 求心作業	31
0	8.2 整準作業	33
9.	电源 ON/OFF	30 36
	9.2 タッチパネルの調整	36
10). 外部機器との接続	37
	10.1 Bluetooth 通信の設定	37 38
	10.3 USB 機器との接続	39
	10.4 通信ケーブル(RS232C)による接続	40
	. 窒退鏡のヒント合わせとターケットの祝凖	42
12	1. 月 度 測 定	43
	12.2 決まった角度からの測定(水平角の任意角度設定)	44
	12.3 測角してデータを出力	45
13	3. 距離測定	46
	13.2 距離と角度の同時測定	47
	13.3 測距してデータを出力	48
1/	Ⅰ3.4 NEW 测定	49 51
	14.1 器械点データ入力	51
	14.2 方向角の設定	52
15	14.5 二次儿座惊剧足 · · · · · · · · · · · · · · · · · · ·	54
I U	小区/ハヘム ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	$\mathbf{J}\mathbf{U}$

16. 杭打ち測定	. 61
162 水平角と距離から杭打ち	01
16.3 座標から杭打ち	65
16.4 REM 測定の杭打ち	69
17.オフセット測定	. 71
17.1 オフセット距離	71
17.2 オフセット角度	73
17.3 オノビットZ泉	/4
18. 刈辺測正	. / /
18.2 原点の変更	79
19. 面積計算	. 80
20. 各種設定	. 84
20.1 観測条件	84
20.2 器械設定	87
20.3 EDM 設定	89
20.4 タブの追加と変更	92
20.6 ソフトキーのユーザー割り付け	96
20.7 スターキーモードのユーザー割り付け	98
20.8 パスワード	.100
20.9 単位	100
20.11日付・時間	.101
21. 警告・エラーメッセージ	102
22. 点検・調整	104
22.1 円形気泡管	.104
22.2 電子気泡管	.105
22.3 コリメーンヨン	107
22.5 求心望遠鏡	.110
22.6 測距定数	.111
22.7 レーザー求心(特別付属品)	.112
23. 電源システム	114
24. ターゲットシステム	115
25. 付属品	117
26. 仕様	119
27. 解説	123
27.1 正反視準による高度目盛のリセット	.123
21.2 両差補止について	.124
28. 文字人力表	125
29. 索引	126

1. 安全にお使いいただくために

この取扱説明書や製品には、製品を安全にお使いいただき、お使いになる人や他の人への危害、財産への損 害を未然に防ぐために、必ずお守りいただきたいことが表示されています。 その内容と図記号の意味は次のようになっています。内容をよく理解してから本文をお読みください。

▶ 表示の意味

\bigwedge	警告	この表示を無視して、誤った取り扱いをすると、使用者が死亡または重傷 を負う可能性が想定される内容を示しています。
	注意	この表示を無視して、誤った取り扱いをすると、使用者が傷害を負う可能 性が想定される内容および物的損害のみの発生が予想される内容を示して います。

- ▲ この図記号は注意(警告を含む)を促す事項があることを示しています。 この図の中や近くに、具体的な注意内容が書かれています。
- この図記号は禁止事項があることを示しています。 この図の中や近くに、具体的な禁止内容が書かれています。
- この図記号は必ず行っていただきたい事項があることを示しています。 この図の中や近くに、具体的な指示内容が書かれています。

▶ 全体について

_____ 炭坑や炭塵の漂う場所、引火物の近くで使わないでください。爆発の恐れがあります。 ☆止

分解・改造をしないでください。火災・感電・ヤケド・レーザー被ばくの恐れがあります。

分解禁止

禁止

 \bigcirc

禁止

4

指示

Ω

指示

 \bigcirc

禁止

 (\mathbf{N})

禁止

⊗ 禁止

 \land

警告

望遠鏡で太陽を絶対に見ないでください。失明の原因になります。

望遠鏡で反射プリズムなど反射物からの太陽光線を見ないでください。失明の原因にな ります。

太陽観測の際には専用の太陽フィルターをご使用ください。太陽観測の際、望遠鏡で直 接太陽を見ると、失明の原因になります。

格納ケースに本体を入れて持ち運ぶ際には、必ず格納ケースのロックをすべて掛けてく ださい。本体が落下してケガをする恐れがあります。

\Lambda 注意

格納ケースを踏み台にしないでください。すべりやすくて不安定です。転げ落ちてケガ をする恐れがあります。

格納ケースやベルトが傷んでいたら機器を収納しないでください。ケースや機器が落下 して、ケガをする恐れがあります。

垂球を振り回したり、投げたりしないでください。人に当たりケガをする恐れがあります。

ハンドルは本体に確実に取り付けてください。ゆるんでいるとハンドルを持ったときに 本体が落下して、ケガをする恐れがあります。

9 指示

(

禁止

▶ 電源について

整準台の着脱レバーを確実に締めてください。ゆるんでいるとハンドルを持ったときに 整準台が落下して、ケガをする恐れがあります。

\land	警告
分解禁止	バッテリーや充電器を分解・改造したり、強い衝撃・強い振動を与えたりしないでくだ さい。発火・火災・感電・ヤケドの恐れがあります。
S 本止	端子をショートさせないでください。大電流による発熱や発火の恐れがあります。
	充電器に衣服などを掛けて充電しないでください。発火を誘発し、火災の恐れがあります。
	表示された電源電圧以外の電圧で使用しないでください。火災・感電の原因になります。
	指定されているバッテリー以外使わないでください。火災・破裂・発熱の原因となります。
禁止	傷んだ電源コード・プラグ、ゆるんだコンセントは使わないでください。火災・感電の 恐れがあります。
	指定されている電源コード以外は使わないでください。火災の原因になります。
	バッテリーの充電には、専用の充電器を使ってください。他の充電器を使うと、電圧や +-の極性が異なることがあるため、発火による火災・ヤケドの恐れがあります。
	バッテリーや充電器などを他の機器や他の用途に使用しないでください。発熱・発火に よる火災・ヤケドの恐れがあります。
逐 禁止	バッテリーや充電器などを火中に投げ込んだり、加熱したりしないでください。破裂し てケガをする恐れがあります。
● 指示	バッテリーを保管する場合は、ショート防止のために、端子に絶縁テープを貼るなどの 対策をしてください。そのままの状態で保管すると、ショートによる火災やヤケドの恐 れがあります。
⊗ 禁止	バッテリーや充電器の端子が水にぬれた状態で使わないでください。接触不良、ショー トによる火災・ヤケドの恐れがあります。
	ぬれた手で電源プラグを抜き差ししないでください。感電の恐れがあります。
	注意

バッテリーからもれた液に触らないでください。薬害によるヤケド・カブレの恐れがあ ります。

▶ Bluetooth 無線技術について

2. 使用上のお願い

▶ バッテリーの充電について

- ・ バッテリーは、必ず以下の温度範囲内で充電してください。
 充電温度範囲:0~40℃
- 指定のバッテリー・充電器を使ってください。他のバッテリー・充電器を使った場合の故障は、機器本体を含め保証対象外となります。
 (バッテリー:BDC72 充電器:CDC77)

▶ バッテリーの保証について

・ バッテリーは消耗品のため、充電を繰り返すことによる容量低下は保証対象外となります。

▶ 望遠鏡について

太陽光に望遠鏡を直接向けないでください。また、使用しないときはレンズキャップを取り付けてください。太陽光が機械に直接入ると内部機能に支障をきたすことがあります。太陽を観測する際は専用フィルタを使用してください。

 「了「25. 付属品」

▶ 着脱レバーなどについて

出荷の際には、本体が整準台からはずれないよう着脱レバーの固定ねじが締めてあります。最初にご使用になる時には、このねじを精密ドライバーでゆるめてください。また、本機を輸送するときには、本体が整準台からはずれないように着脱レバーの固定ねじをドライバーで締めてください。

ハンドルは取りはずしができます。取り付けて測量する場合は、ハンドル取り付けロックをしっかり締めてください。

▶ 防塵・防水について

本機の防塵、防水性能は IP65 に適合しています。使用にあたっては以下のことにご注意ください。

- ・ バッテリーカバーとコネクターキャップ、および外部メモリーハッチはきちんと閉めてください。
- バッテリーカバー内部、接点、およびコネクターに水分や塵がつかないように十分注意してください。
 これらの部分から機械内部に水分や塵が侵入すると、故障の原因となります。
- ・ 格納するときは、本体と格納ケース内部が乾いていることを確認してください。内部に水滴がついてい ると、本体がさびる原因となります。
- バッテリーカバーおよび外部メモリーハッチのゴムパッキンにひび割れ変形がある場合は、そのまま使用せずに交換してください。
- 防水性能を維持するために2年に1回のゴムパッキンの交換をおすすめします。ゴムパッキンの交換は 最寄りの営業窓口までご依頼ください。
- スピーカーおよび照度センサーの穴を先端のとがったもので押さない でください。内部の防水シートが傷ついて、防水性が保てなくなりま す。

▶ バックアップ電池(リチウム電池)について

本機のカレンダー・クロック機能を保持するために、リチウム電池を使用しています。通常の保存・使用環 境(約 20 ℃、湿度約 50%)では、約5年間使用できますが、使用状況によっては短くなることがありま す。リチウム電池の電圧が低下したり、なくなったりすると、年月日時間の表示が正しくなくなり、「時計 エラー」のメッセージが表示されます。リチウム電池の交換は最寄りの営業窓口までご依頼ください。

▶ 固定つまみについて

機械を回転するときは水平固定つまみを、望遠鏡を回転するときは望遠鏡固定つまみを完全にゆるめてください。半固定のまま回転させると精度に影響がでる場合があります。

▶ 整準台について

・ 整準台は必ず付属の整準台をお使いください。多角測量(トラバース測量)を行う場合は、ターゲット 側も同型の整準台をお使いになると安定した測定が行えます。

▶ データのバックアップについて

 データの消失などを防ぐため、定期的に測定データのバックアップ(データの外部機器への転送など) をしてください。

▶ その他のお願い

- 機械を直接地面に置かないでください。土やほこりは機械の底板のねじ穴を傷めます。
- レンズフード、ダイアゴナルアイピース、および太陽フィルターを使用しているときの鉛直角の回転は、
 十分注意してください。機械本体に付属品がぶつかると、機械・付属品双方を傷めます。
- ・ 落下や転倒など、大きな衝撃・振動を与えないでください。
- ・ 機械を雨、霧から傘等で保護してください。
- 移動する時は必ず三脚から本体を取りはずしてください。
- バッテリーを本体から取りはずすときは、電源を OFF にしてください。
- 格納する時は、本体からバッテリーを取りはずし、格納要領図に従って格納してください。
- 本体がさびないよう、格納ケースのフタを閉める前に、本体と格納ケースの内部が乾いていることを確認してください。
- 長期間にわたる連続使用や湿度の高い環境下など、特殊な条件でお使いになる場合は、あらかじめ最寄りの営業窓口にご相談ください。ご使用の環境によっては、保証の対象外となります。

▶ メンテナンスについて

[了 「22. 点検・調整」

- ・ 作業中雨がかかった場合には、水分をよくふき取ってください。
- ・ 測量終了後は、格納ケースにしまう前に必ず本機各部を清掃してください。特にレンズは、必ず十分に 手入れをしてください。付属のレンズ刷毛を使って細かな塵を払ってから、レンズに息を吹きかけて曇 らせ、付属のシリコーンクロスで軽くふいてください。
- 本体の表示部は乾いたやわらかい布で軽くふいてください。表示部以外の部分および格納ケースが汚れた場合は、水または薄めた中性洗剤に浸したやわらかい布を固く絞って汚れをふきとってください。アルカリ性洗剤や有機溶剤は使用しないでください。
- 『♪ タッチパネル操作の一時的な無効:「 5.2 表示部とその操作」、「 20.2 器械設定」
- ・ 湿気が少なく、室温が安定した場所に保管してください。
- 三脚は、長期間使用すると石突き部のゆるみ・蝶ねじの破損などが原因でガタが生じる場合があります。
 時々各部の点検・締め直しを行ってください。
- 機械の回転部分・ねじ部分に異物が入ったと思われるときや、望遠鏡の内部レンズ・反射プリズムなど に水滴の跡やカビなどを発見したときは、最寄りの営業窓口にご連絡ください。
- 長期間使用しない場合でも、3ヶ月に一度は点検を行ってください。
- 機械を格納ケースから取り出す際、無理にひっぱりださないでください。取り出した後は、湿気が入らないようにケースは閉めておいてください。
- 常に高い精度を保持するため、年に1~2回は最寄りの営業窓口による定期点検検査を受けることをお すすめします。

▶ 海外への輸出について(米国の輸出許可の確認)

本製品は EAR(Export Administration Regulation) の対象となる部品・ユニットが組み込まれている 他、ソフトウェア・技術を含んでおります。輸出国(お持込みになる国)によっては、米国の輸出許可 が必要となります。このような場合には、お客様ご自身で手続きしていただきますようお願いいたしま す。

なお、輸出許可が必要となる国は 2020 年 3 月時点で以下のとおりです。変更になる場合もありますの で、米国輸出管理規則(EAR)をご自身でご確認ください。

北朝鮮

イラン

シリア

スーダン

キューバ

米国 EAR の URL:http://www.bis.doc.gov/policiesandregulations/ear/index.htm

▶ 海外への輸出ついて(電波法への適合の確認)

本製品は無線機能を搭載しています。海外で使用する場合は、その国の電波法への適合が必要になります。輸出(お持ち込み)でも、電波法への適合が必要になることがあります。あらかじめ最寄りの営業窓口にご相談ください。

▶ 免責事項について

- ・本製品の使用または使用不能から生じた付随的な損害(データの変化・消失、事業利益の損失、事業の 中断など)に関して、当社は一切責任を負いません。
- ・ 本書で説明された以外の使い方によって生じた損害に対して、当社は一切責任を負いません。
- 雨天、強風、高温、多湿等、異常な条件下での保管、使用により本製品に生じた損害に対し、当社は一切責任を負いません。
- ・ 本製品の改造に起因する故障は、補償の対象外です。
- ・ 本書に記載した注意事項や警告事項は、すべての起こりうる事象を網羅したものではありません。

3. レーザー製品を安全にお使いいただくために

本機は「JIS レーザ製品の安全基準 (JIS C 6802:2014)」で定められた「クラス 3R」/「クラス 1」 レーザー製品です。

	装置	レーザークラス
	測距光 (ターゲットの設定をノンプリズムにしているとき)	クラス 3R
対物レンズ内 EDM 装置	測距光 (ターゲットの設定をプリズムまたは反射シートにしてい るとき)	クラス 1
	レーザー照準	クラス 3R
レーザー求心(特別付属品)		クラス 2

4

 対物レンズ内 EDM 装置のレーザーは「クラス 3R」ですが、「ターゲット」をプリズム・反射シートに 設定した測定時のレーザー射出量は「クラス 1」相当です。ノンプリズム測定時と比べて、より安全な レベルとなります。

レーザー製品を安全にお使いいただくために、次のことにご注意ください。

▲ 警告

- この取扱説明書に書かれた手順以外の操作や調整は、危険なレーザー放射の被ばくをもたらす恐れがあります。
- 本機には、「JIS レーザー製品の放射安全基準」にしたがって、下のようなラベルが貼られています。レー ザー製品を安全にお使いいただくために、シールに書かれた内容に従って正しくお使いください。

- 故意に人体に向けて使用しないでください。レーザー光は眼や人体に有害です。万一、レーザー光による 障害が疑われるときは、速やかに医師による診察処置を受けてください。
- レーザー光を直接のぞきこまないでください。
- レーザー光を凝視しないでください。眼障害の危険があります。
- レーザー光を望遠鏡や双眼鏡などの光学器具を通して絶対に見ないでください。眼障害の危険がありま す。
- レーザーがターゲットからはずれて射出されないように視準してください。

- 始業点検、一定期間ごとの点検・調整を行い、正常なレーザー光が射出される状態で使用してください。
- 測定時以外は電源を切るか、レーザー射出口をレンズキャップで遮断するようにしてください。
- 廃棄する場合は、レーザー光を出さないように通電機能を破壊するなどの処置をしてください。

- レーザー製品は、車を運転する人や歩行者の目の高さを避けて設置してください。レーザー光が不意に目 に入ると、まばたきによって不注意状態を生じ、思わぬ事故を誘発する恐れがあります。
- 鏡・ガラス窓などレーザー光が強く反射する構造物に当たらないように設置してください。レーザーの反射光も人体に有害です。
- ●本製品を使用される方は、以下の項目に関する訓練を受けてください。
 ・本製品の使用方法(本取扱説明書をよくお読みください)
 ・危険防御手順(本章をよくお読みください)
 - ・人体保護の必要性(本章をよくお読みください)
 - ・事故報告手順(万一レーザー光による障害が生じた場合の搬送手順や医師への連絡方法をあらかじめ定めてください)
- レーザー放射にさらされる区域内の作業者は、お使いの機械のレーザー波長に対応した保護めがねを着用 してください。(OD2)
- レーザーを用いる区域には、レーザー警告標識を掲示してください。
- レーザー照準機能を使った場合は、使用後必ずレーザー射出を OFF にしてください。測距が停止しても レーザー照準機能のレーザー光は自動で OFF になりません。

4. 製品概要

4.1 各部の名称

▶ 各部の名称と機能

- 1 ハンドル
- 2 Bluetooth 無線アンテナ
- 3 外部メモリーハッチ
 - (USB ポート、リセットボタン)
- 4 機械高マーク 🛍
- 5 バッテリーカバー
- 6 表示部
 - 7 シリアル信号コネクター
 - 8 円形気泡管
 - 9 円形気泡管調整ねじ
 - 10 底板
 - 11 整準ねじ
 - 12 求心望遠鏡合焦つまみ
 - 13 求心望遠鏡接眼レンズつまみ
- 14 求心望遠鏡焦点鏡カバー
- 15 照度センサー
- 16 ガイドライト 🌇
- 17 対物レンズ
 - (「レーザー照準機能」あり 🌆)
- 18 ハンドル固定ねじ
- 19 棒磁石取り付け部
- 20 望遠鏡固定つまみ
- 21 望遠鏡微動つまみ
- 22 トリガーキー 🌇
- 23 水平微動つまみ
- 24 水平固定つまみ
- 25 着脱レバー
- (FX-205F ではセンタリング固定ねじ)
- 26 望遠鏡接眼レンズつまみ
- 27 合焦つまみ
- 28 照準器 🛍
- 29 機械中心マーク

解し 機械高マーク

本機の機械高は以下の通りです。

• 192.5mm

(整準台取り付け面から機械高マークまで)

· 236mm +5/-3mm

(整準台着脱式:整準台 TR-102 底面より機械高マークまで)

(整準台センタリング式:三脚取り付け面より機械高マークまで)

器械点設定で入力する「器械高」は、測点(本機を設置した点)から「機械高マーク」までの高さです。

赤色レーザーを射出します。暗い場所での測定で、望遠鏡をのぞかずにターゲットの方向に合わせることができます。

解 説 Ũ ガイドライト

ガイドライトを使うと杭打ち測定などが効率的に行えます。ガイドライトは左右に緑と赤に分かれてい ます。ポールマンは現在の位置から見えるガイドライトの色を確認することによって、左右どちらに移 動すべきか知ることができます。

緑

赤

(機械が正の状態で対物レンズ側から見た場合)

● ガイドライトの状態と意味

ライトの状態	意味
だんだん速くなる点滅	(ポールマンから見て)前方にターゲットを移動
だんだん遅くなる点滅	(ポールマンから見て)後方にターゲットを移動
速い点滅	前後位置が合っている
赤	(ポールマンから見て)左方向にターゲットを移動
禄	(ポールマンから見て)右方向にターゲットを移動
赤と緑の両方	左右位置が合っている

℃了「16.1 ガイドライトの活用」

^解 照準器

測点に本機の方向を合わせるときに使用します。照準器をのぞき、望遠鏡をターゲットの方向に合わせ ます。

解 説 ロトリガーキー

画面に太字で表示されたソフトキーが表示されているときにトリガーキーを押すと、本機は太字で表示 されたソフトキーを押したときと同じ動作をします。一般的な測定作業を行うことができます。

▶Bluetoothアンテナ(Bluetoothデバイス搭載製品のみ)

Bluetooth無線技術を使った通信ができます。

4

 アンテナは、作業中や格納時にぶつけたりしない ように注意してください。破損するおそれがあり ます。

▶ ハンドル

天頂付近にターゲットがあるときなど、本体のハン ドルは取りはずすことができます。 ハンドル固定ねじをゆるめてハンドルをはずしてく ださい。

▶ 整準台の取りはずし

- 1. 着脱レバーを左に回して緩める
- 2. 機械を真っすぐ上へ持ち上げて取りはずす

▶ 整準台の取り付け

- 1. 機械底部にある位置決めコマと整準台の位置決め満を合わせてのせる
- 2. 着脱レバーを右に回してしっかり締める

4.2 モード構成

本機のモード構成とモード間を移るためのキー操作を以下に示します。

●基本モード

- ・ 測距中は、モードの切り替えはできません。
- ・(PRG)を押した直後(「プログラム実行中」のメッセージ表示中)は(PRG)によるモードの切り替え や電源の ON/OFF は行わないでください。

4.3 Bluetooth 無線技術について

4

- ・ Bluetooth 無線技術は、Bluetooth デバイス搭載製品のみ使用できます。
- 海外で使用する場合は、その国の電波法の認証が必要になります。ご使用の際は、あらかじめ最寄りの 営業窓口にご相談ください。
- 通信内容および通信に付随する内容の補償はできません。重要な通信を行う場合は事前に問題なく通信 ができるかどうか十分なテストを行ってください。
- ・ 他人の通信内容を、第三者にもらしたりしないでください。

▶Bluetooth 無線技術で使用する電波について

本機の Bluetooth 無線技術の使用周波数は、2.4GHz 帯域です。下記の機器などは、Bluetooth 無線技術と同じ電波の周波数帯を使用しています。

これらの機器の近くで本機を使用すると、電波の干渉を発生するおそれがあります。そのため、通信ができ なくなったり速度が遅くなったりする場合があります。

- ・電子レンジ/ペースメーカー等の産業・科学・医療用機器など
- ・工場の製造ライン等で使用されている移動体識別用の構内無線局(免許を要する無線局)
- ・特定小電力無線局(免許を要しない無線局)
- ・IEEE802.11b、IEEE802.11g、または IEEE802.11n 無線 LAN 機器

本製品を使用する上で、無線局の免許は必要ありませんが、以下の注意をお守りください。

- 電子レンジの近くでは使用しないでください。
 - ・強い電波の干渉により正常に通信できない場合があります。通信時は電子レンジから 3m 以上離れてく ださい。
- 構内無線局や特定小電力無線局の近くでは、以下の対応を行ってください。
 - ・通信する前に、近くで移動体識別用の構内無線局および特定小電力無線局が運用されていないことを確認してください。
 - ・万一、本機から移動体識別用の構内無線局に対して電波干渉の事例が発生した場合には、速やかに電波の発射を停止した上、混信回避のための処置等(例えば、有線による接続など)を行ってください。
 ・その他、本製品から移動体識別用の特定小電力無線局に対して電波干渉の事例が発生した場合などは、 最寄りの営業窓口にご相談ください。
- IEEE802.11b、IEEE802.11g、または IEEE802.11n の無線 LAN 機器の近くで使用する場合は、 使用しない機器の電源を切ってください。

・電波障害が発生し、通信速度の低下や接続不能になる場合があります。

● テレビ、ラジオを本機の近くでは、できるだけ使用しないでください。

・テレビ、ラジオなどは、Bluetooth無線技術とは異なる電波の周波数帯を使用しているため、本機の近 くでこれらの音響機器を使用しても通信に影響はありません。ただし、本機を含む Bluetooth機器が 発する電磁波の影響によって、これらの音響機器の音声や映像にノイズが発生する場合があります。

▶ 通信上の注意

● 良好な通信のために

途中に障害物がある場合には、通信距離が短くなります。特にコンクリートや鉄筋コンクリート、金属がある場合は通信できません。木材やガラス、プラスチックなどは通過しますので、通信はできま す。ただし、内部に鉄骨や鉄板、アルミ箔を使用した断熱材等使用されている場合や、金属粉を混ぜ た塗料で塗装してある場合も通信できないことがあります。

- ・防水のためにケースに入れる場合はビニールやプラスチックのケースに入れてください。金属で覆うと 通信できません。
- ・アンテナの向きが変わると通信距離が短くなることがあります。

● 雨天や霧、森林の中、人ごみや地面の近くでは通信距離が短くなることがあります。

・本機で使用している電波は、水分に吸収され電波が弱くなることがあります。また、地面の近くでは電 波が弱くなりますので、無線装置はできるだけ高いところで使用してください。

#

・弊社は、すべての Bluetooth 対応機との通信を保証するものではありません。

5. 基本操作

本機の操作をする上で基本となる操作を説明します。各種測定の手順の説明を読む前によくお読みください。

5.1 基本のキー操作

● 電源 ON/OFF

[①]	電源 ON
[①]長押し(約1秒)	電源 OFF

● レチクル照明/キーライト ON/OFF とバックライトの明るさ切り替え

[☆]	押すたびにレチクル照明・キーライトが ON / OFF
	(キーライトが ON のときはバックライトが暗くなります)

℃ バックライトの明るさ:「20.2 器械設定」

● スターキーモードへの切り替え

(★)	押すたびにスターキーモードへ移動/基本モードへ戻る

プログラムモードへの切り替え

(PRG)	押すたびにプログラムへ移動/基本モードへ戻る

4

・(PRG)を押した直後(「プログラム実行中」画面の表示中)は、(PRG)によるモードの切り替えや電源の ON/OFF は行わないでください。

備考

・メニューモードの【読込】をタップした場合、下記のときに(PRG)は無効となります。

- ・座標データが存在しないメッセージボックスを表示しているとき
- ・座標参照ダイアログを表示しているとき

● ターゲットタイプの切り替え

[@]	ターゲットタイプ切り替え
	(プリズム/シート/ノンプリズム)

C了「20.3 EDM 設定」

備考

・ステータスバーやスターキーモードのアイコンで切り替えることもできます。

〔〕「表示部とその操作 ステータスバー」、「5.4 スターキーモード」

● レーザー照準/ガイドライトの ON / OFF

[☆]長押し	レーザー照準/ガイドライトの ON / OFF
(「ピッ」と鳴るまで押し続け	
ます)	

【了[☆]を押したときのレーザー照準/ガイドライトの切り替え:「20.3 EDM 設定」

備考

・ステータスバーやスターキーモードのアイコンで切り替えることもできます。 『ア 「 表示部とその操作 ステータスバー」、「 5.4 スターキーモード」

● ソフトキーのページの切り替え

(FUNC)	観測モード画面のソフトキーページ切り替え

● 文字/数値の入力

(α)	文字入力切り替え(数値/英字/カタカナモード)
〔α〕長押し(約1秒)	押すごとに全角モード ON / OFF
$(Shift) + (1) \sim (9)$	(英字モード時)]文字ずつのアルファベットの大文字/小文字入力切
	り替え
(Shift)長押し(約1秒)	(英字モード時)アルファベットの大文字/小文字入力切り替え
(Shift) + (α)	<入力パネル>の表示/非表示
$(0) \sim (9)$	(数値モード時)数字の入力
	(英字モード時)アルファベットの入力(各キーの上に標記されている
	3 文字と数字を順に表示・入力)
	(カタカナ/ひらがなモード時)カタカナ/ひらがなの入力(各キーの
	上に標記されている行の文字を表示・入力)
(•)	(数値モード時)小数点の入力
	(英字モード時)記号の入力
	(カタカナモード時)「゜」や「゜」の入力
(+/-)	(数値モード時)符号の入力
	(英字モード時)記号の入力
	(カタカナモード時)記号の入力
(ESC)	入力したもの全てを取り消す
(TAB)	次の項目へ移動
(B.S.)	左側の文字または選択した文字列を消去
(S.P.)	スペースを入力(時間の設定では、数値が1増加)
	カーソルを左右に移動
	カーソルを上下の項目に移動
(ENT)	 入力の確定

□ 入力のルール・特殊文字の入力:「28. 文字入力表」、「5.3 文字入力パネルによる文字入力」

● 項目の選択

(▲) / (▼)	カーソル/選択項目の上下移動
	カーソルの左右移動と選択肢の表示
(TAB)	次の項目へ移動
(S.P.)	(全角モード OFF 時)選択肢の表示
(ENT)	

● タブの選択

(▲) / (▼)	タブとタブページ内のカーソルの上下移動
	タブページの移動

『アタブ:「5.2 表示部とその操作」

● その他

[ESC] 1 つ前の画面へ戻る 1 つ前の画面へ戻る 1 つ前の画面へ戻る 1 つ前の画面へ戻る 1 つ前の画面へ戻る
--

▶ 例1:「パソコン」と入力する場合(半角カタカナ入力)

(α)を数回押して、入力モードをカタカナに切り替える

入力モードの表示(ステータスバーの下から2段 目)が「_ア」になります。

備考

・全角モードの ON/OFF は〔 α 〕を長押しして行います。

2.(6)を1回押す

「八」と表示されます。

3.(・)を2回押す

「ハ」が入力され、カーソルが次の入力位置に移動 します。「[°]」と表示されます。

			×
新規登録		×	•77
名称	л°		0
備考			PPM
			<u></u>
			9.0
			7
	OK		P
			P1

4. (9) を5回押す

「[°]」が入力され、カーソルが次の入力位置に移動 します。「ソ」と表示されます。

5. 入力を続け、入力が完了したら(ENT)を押す 入力が確定し、次の項目の入力に移ります。

▶ 例 2:ターゲットタイプを選択する場合

(方法1)

- 観測モードのソフトキー1ページ目で【EDM】 を押すか、設定モードで「EDM」を選択する
 - C了「5.2 表示部とその操作」の「● 観測モードの基本画面」

EDM設定				×
EDM ppm				.77
測距モート		精密単回]	0 (1) 0
ターケット		アッリス・ム	•	
プリズム定数補	正値		7.0 mm	_L°
照明キー長押		レーサート照	準 🔽	9.0
ガイドライト		3		_1
				1
2X 52	録		OK	

- (▲) / (▼) / (TAB) で「ターゲット」に カーソルを合わせる
- **3. (S.P.) を押して選択肢を全て表示させる** 選択肢が一覧表示されます。

EDM設定				×
EDM ppi	n			-77
測距モート		精密連絡	続 🔻	0 (1) 0
ターゲット		ר [°] ע דע ד		
プリズム定義	数補正値	プリズム		
		ーシート ーノンプリス「ム	· [9.0
				_1
				1
	登録		OK	

- 4. (▲) または (▼) を押して選択する
- 5.(ENT)を押して、選択を確定する
- (方法2)
- 観測モードのソフトキー1ページ目で【EDM】 を押すか、設定モードで「EDM」を選択する
- (▲) / (▼) / (TAB) で「ターゲット」に カーソルを合わせる
- 3. (◀) / (▶)を押して設定したい選択肢を表示させる
 選択肢が順番に表示されます。設定する選択肢を表示させ選択を確定します。

5.2 表示部とその操作

画面の選択や操作は、キーボード、スタイラス(ペン)や手によるタッチパネル方式のいずれでもできます。 タッチパネルの操作は、一時的に無効にすることができます。

C了「20.2 器械設定」

4

・表示部上をひっかいたり、スタイラス以外の先のとがったものでつついたりしないでください。

▶ スタイラスの操作

スタイラスを使って、表示部上に表示されているメニュー・ボタンなどの選択およびスクロールバーの移動 などをすることができます。

▶ タッチパネル操作の一時的な無効

表示部の掃除などのために、タッチパネルの操作を一時的に無効にすることができます。 タッチパネルアイコンをタップすると<タッチパネル一時無効>が表示されます。

表示中はタッチパネルの操作が無効になります。(ESC)を押すと画面は閉じ、タッチパネルの操作が有効 になります。

▶ 画面の表示と操作

- ・【×】または(ESC)を押すと、画面を閉じます。
- ・タブ、ソフトキー、項目および文字の表示は、変更することができます。 『ア「20. 各種設定」
- トップメニュー

ソフトウェアバージョンを表示

● バージョン表示モードの画面

	観測モー	ドの基本	画面
--	------	------	----

ソ

	観測				×	
	SHV 📰	誰 グラフィッ	ク		77	
	斜距离推				0	
				İ	PPIN	┗ (1) 距離表示
	鉛直角		0°08	'14"		(2) 鉛直角表示
			0.00	- ·		
	7K半角 		0°16	'28" 	1	(3) 水平角表示
フトキー ―――	EDM	チルト	0セット	測定	P1	

(1) 距離の表示

「距離」タブには、水平距離と高低差も表示されます。 「SHV」タブの距離表示を切り替えることもできます。 ℃了「20.1 観測条件」

(2) 鉛直角の表示

鉛直角(天頂 0°) / 高度角(水平 0°/水平 ±90°) に表示を切り替えられます。 【ZA /%】を押すと角度表示/勾配%表示が切り替わります。大文字になっているのが選択されている 表示方法です。 ℃了表示の変更:「20.1 観測条件」、【ZA /%】の割り付け:「20.6 ソフトキーのユーザー割り付け」

(3) 水平角の表示

【R / L】を押すと表示が切り替わります。大文字になっているのが選択されている表示方法です。 (水平角 R:水平角右回り、水平角 L:水平角左回り) 『『ア【R / L】の割り付け:「20.6 ソフトキーのユーザー割り付け」

● 測距中画面

● 入力と設定の画面

● グラフィックタブ

ソフトキー2ページ目で表示の変更をすることができます。

- 【設定】 : <グラフ設定>で、画面の上方向の表示方法と画面の中心の表示方法(自動中心)の選択をします。
- 【視準点】:表示を初期状態に戻します。
- 【拡大】 :画面中心を基点に拡大表示します。
- 【縮小】 :画面中心を基点に縮小表示します。

● 各画面のメニュー選択

メニューを選ぶには、各メニューをタップまたは番号をキー入力します。

● ステータスバー

ステータスバーの各アイコンで、機械の状態が分かります。 各アイコンをタップすると選択切り替えや機能の ON / OFF などが行えます。 長押しすると、選択肢の一覧と設定画面への移動メニューが表示されます。

ステータスバーのアイコンの配列はスターキーモードの配列と連動しています。 ごア アイコンの説明:「5.4 スターキーモード」

5.3 文字入力パネルによる文字入力

ステータスバーやスターキーモードの文字入力パネルアイコン № をタップする、もしくは(SHIFT)を押 しながら〔α〕を押すと、<入力パネル>が表示されます。(もう一度アイコンをタップすると閉じます) № を長押しすると、入力方法を選択できます。ひらがな/カタカナ入力・英数字入力から検索をして入力 をする方法があります。

備考

▶ 文字入力パネル

入力パネル											
Esc	1	2	3	4	5	6	7	8	9	0	← BS
半角	q	W	е	r	t	у	u	İ	0	р	←→
英数·	• a	s	d	f	g	h	j	k		'	t
φC	itl a	z)			v t	1 c	nГ	n,		. 🔺	変換

英数入力パネル

እታ	ĸ	ネル										
Esc	わ	6	で	ŧ	は	な	た	đ	か	あ	0	← BS
金角	を	너		Ъ	잔	Е	ち	U	き	Ļ١	10	← →
	ĥ	S	ゆ	む	ιŝι	ಭ	2	す	\leq	Э	ļ	
Uр	г	れ		め	>	ね	τ	せ	け	え	1	-
小字	Г	3	よ	ŧ	Ιđ	の	8	そ	E	お	。	▲変換

ひらがな入力パネル

Esc : 漢字に変換前の入力したもの全てを取り消す

全角/半角 :カタカナ・英字・数字・記号の入力時、全角入力/半角入力の切り替え

- ひら/カタ :ひらがな入力/カタカナ入力の切り替え
- 小字 :「っ」、「ゅ」などの促音の入力
- ← BS : 左側の文字または選択した文字列を消去
- ← → :カーソルを左右に移動
- ENT :入力の確定
- 変換
 : ひらがなとカタカナを漢字に変換。または英大文字小文字変換。
- スペース :スペース入力

英数入力時

- 英数/記号:英数字入力/記号入力の切り替え
- ↑ :大文字と記号/小文字と数字の切り替え

5.4 スターキーモード

スターキーモードは、基本モードの各画面から割り込みで設定確認や変更ができる便利なモードです。 (★)を押すとスターキーモードに入ります。

- スターキーモードには12個のアイコンが割り付けられており、上の8個はステータスバーと連動しています。
- ・アイコンの割り付けを変更することもできます。
 - 『□ スターキーモードの配列変更: 「20.7 スターキーモードのユーザー割り付け」

各アイコンで機械の状態が分かります。

アイコンをタップすると選択切り替えや機能の ON / OFF などが行えます。 長押しすると、選択肢の一覧と設定画面への移動メニューが表示されます。 各アイコンの説明は以下のとおりです(番号は上記画面と対応しています)。

(1) バッテリーアイコン

バッテリー残量を表示します。(BDC72 使用、気温 25 ℃、EDM 動作時) 測距時と停止時で残量表示が異なることがあります。

- 【 2000 □ 20000 □ 2000 □ 20000 □ 2000 □ 2000 □ 2000 □ 2000 □ 2000 □ 2000 □ 200
- 【□□:レベル2 充分な残量
- 【□□:レベル1 半分以下の残量
- ▶ アアア:レベル0 残量わずか 予備のバッテリーを準備してください(赤と黒の点滅表示)
- ……:残量なし 速やかに作業を中止し、充電をしてください(赤で画面に大きく表示)

€了「7.1 バッテリーの充電」

(2) ターゲットタイプアイコン

ターゲットタイプとプリズム定数補正値の選択と設定をします。

● フჼリスჼム Omm		0	:プリズム (Omm)
›ኑ Omm		0	:反射シート(Omm)
ノンフリスム	⇒		:ノンプリズム
EDM設定画面へ			ターゲットの情報を登録・編集することができます。 『♪「20.3 EDM 設定 手 順 ターゲットの登録・編集」

(3) PPM 設定(気象補正係数)アイコン 現在設定されている気象補正係数が表示されます。 EDM の設定をします。

EDM	定面	画へ
0 PPM	/	499

気象補正設定値

- (4) レーザー照準/ガイドライトアイコン
 - レーザー照準/ガイドライトの状態の選択と設定をします。 『
 ア レーザー照準機能/ガイドライトの ON / OFF: 「5.1 基本のキー操作」

備考

・測距中はレーザー照準が OFF になります。

(5) 傾斜角自動補正アイコン

内蔵の2軸電子気泡管によって鉛直軸の傾きが測定され、鉛直角と水平角が自動的に補正されます。補 正状態の選択と設定をします。

利い画面へ	
● チルト補正あり(H,V)	:鉛直角と水平角の傾斜角補正あり(青色表示)
利い補正なし 🔜 🕺	:傾斜角補正なし
チルト補正あり(V)	:鉛直角の傾斜角補正あり(緑色表示)

備考

・チルトオーバーレンジ(補正エラー)の場合は 🗴 が表示されます。

(6) 通信状態アイコン

外部機器との通信方法の選択をします。 通信設定画面に移動することもできます。 CP RS-232C 通信の設定:「10.4 通信ケーブル(RS232C)による接続」 CP Bluetooth通信の設定:「10.1 Bluetooth 通信の設定」

● RS232C	9.0	:RS232C ケーブルによる接続
Bluetooth	d -	: <i>Bluetooth</i> 無線による接続
通信設定画面へ		

外部機器との接続状態は以下のとおりです。

i) Bluetooth 無線による接続

- 🚽 :接続中
- 🗥 : 切断中

🔉 :(アンテナは紫色で静止表示)通信設定中/電源 ON 後など通信準備中

🚽 :接続エラー(点滅表示)(設定によって色が異なります)

ii) 風 🛙 : RS232C ケーブルによる接続

備考

・データ送信/送受信中は矢印が表示されます。(例: 📅 / 🚧)赤い矢印が表示されているときは、 通信に失敗したデータの再送信を要求している状態です。

(7) 入力モードアイコン

入力モードの切り替えや設定をします。全角モードの ON/OFF は入力モードアイコンを長押ししてメ ニューから選択、または〔α〕を長押しして切り替えます。

全角モード OFF のとき		全角モ	ード ON のとき
⊔1	半角数字	1	全角数字
шA	半角英大文字	А	全角英大文字
∎a	半角英小文字	а	全角英小文字
u7	半角カタカナ	あ	全角ひらがな

『♪ キーボードでの文字入力切り替え:「5.1 基本のキー操作 ● 文字/数値の入力」

- (8) 文字入力パネルアイコン □了「5.3 文字入力パネルによる文字入力」
- (9) 設定モードアイコン 設定モードに移行します。 **〔**了「20. 各種設定」
- (10) タッチパネルアイコン

タッチパネル操作の一時無効の選択と設定をします。

タッチパネル一時無効	:タッチパネル一時無効
器械設定画面へ	

備考

・測距中、データ送受信中はタップや長押しをしても選択や設定はできません。

(11) ディスク使用容量アイコン

本機に搭載または接続しているディスク(メモリー)の使用状況が表示されます。

ディスク使用容量:20%以下
 ディスク使用容量:20%から50%

● ディスク使用容量:50%以上

アイコンを長押しすることで、ディスク使用状態の詳細情報が表示されます。

内部ディスク	
使用領域	???? KB
空き領域	???? KB
容量	???? KB
リムーバブル デ	ィスク
リムーバブル デ 使用領域	ብスク ???? KB
リムーバブル デ 使用領域 空き領域	ндр ???? КВ ???? КВ

内部ディスク

使用領域:本機に搭載しているディスク領域の使用済み領域 空き領域:本機に搭載しているディスク領域の空きディスク領域 容量:本機に搭載しているディスク領域

リムーバブルディスク 使用領域:本機に接続している外部ディスク領域の使用済み領域 空き領域:本機に接続している外部ディスク領域の空きディスク領域 容量:本機に接続している外部ディスク領域

4

・リムーバブルディスクの表示は、本機に外部ディスクを接続した場合にのみ表示します。

#

・データの読み書き時に USB メモリーを取りはずさないでください。

備考

- 本機の USB ポートよりデータの送受信を行う場合には、付属の USB メモリーのご使用をお勧めします。市販の USB メモリーに対しての動作保証はしておりません。
- 本機で認識できない一部の USB メモリーに対して、SD フォーマットを行うことで認識可能となるもの がありますが、動作保証をするものではありません。

▶ 手 順

 外部メモリーハッチのボタンをスライドさせて、外部 メモリーハッチを開く

2. USB ポート 1 に USB メモリーを挿入する

3. **外部メモリーハッチを閉める** 「カチッ」と音がするのを確認してください。

7. バッテリーの準備

7.1 バッテリーの充電

初めてご使用になる前や長期間使用していないときは、必ず充電してからお使いください。

4

- ・充電器は、使用中多少熱を持ちますが異常ではありません。
- ・指定のバッテリー以外の使用および充電はおやめください。
 (バッテリー: BDC72 充電器: CDC77)
- ・屋内専用です。屋外で使用しないでください。
- ・充電温度範囲外では充電はされません。必ず充電温度範囲内で充電してください。
- ・充電完了後、再度連続して充電しないでください。バッテリーの性能が劣化することがあります。
- ・充電器からバッテリーを取りはずして保管してください。
- ・使用しないときはコンセントから電源プラグを抜いてください。
- ・バッテリーは、下記の温度範囲で、湿度の低い乾燥した場所に保存してください。長期保存の場合、最低 6ヶ月に一回、充電をしてください。

保存期間	温度範囲
~1ヶ月	-20 ~ 50 °C
1~3ヶ月	-20 ~ 40 °C
3ヶ月~1年	-20 ~ 20 °C

・バッテリーには寿命があります。バッテリーは化学反応を利用した化学製品です。使用していなくても長期保管によって劣化し、容量も低下します。正常に充電しても使用時間が短くなった場合は寿命と判断して、新しいものをご購入ください。

▶手順

- 電源ケーブルを充電器に取り付け、プラグをコンセントに差し込みます。
- 2. バッテリーの溝と充電器のガイドを合わせ、矢印方向 に押して装着します。 充電ランプが緑色に点滅し、充電を開始します。 充電が完了すると、充電ランプが緑色に点灯します。

充電が終了したら、バッテリーをはずし、プラグをコンセントから抜きます。

- ・スロット1と2: バッテリーは2つ同時に充電可能です。
- ・充電時間: (25℃、バッテリー2個同時充電時)

BDC72:約8時間(低温/高温時には、記載の時間以上かかることがあります)

・充電ランプ:

表示	説明
緑色点滅	充電中
緑色点灯	充電完了
黄色点滅	充電温度範囲外です。 充電温度範囲内で充電し直しててください。改善されない場合は最寄りの営業窓口に ご連絡ください。
消灯	バッテリーが正しく装着されていません。 再度正しく装着し直してください。改善されない場合は最寄りの営業窓口にご連絡く ださい。
赤色点灯	充電が正常に行われていません。 充電器またはバッテリーに不具合がある可能性があります。最寄りの営業窓口にご連 絡ください。

・特別付属品(別売)の電源ケーブルを使用することで、海外でもお使いになれます。詳細は最寄りの営業 窓口にご連絡ください。

7.2 バッテリーの装着 /取 りはずし

充電されたバッテリーを装着します。 ごす電源の種類:「23.電源システム」

4

- ・本機には付属のバッテリー(BDC72)をお使いください。
- バッテリーを取りはずすときは電源を OFF にしてください。電源が入ったままバッテリーを取りはずす と、リセット処理が行われることがあります。また、ファイルやフォルダーが壊れることがありますので ご注意ください。
- ・電源が入ったままバッテリーカバーを開けないでください。
- ・バッテリーの装着/取りはずしの際は内部に水滴や塵が入らないようご注意ください。
- ・バッテリーは、本体や充電器から取りはずして保管してください。

▶ 手 順 バッテリーの装着

 バッテリーカバーの両端のボタンを押しながら、カ バーを開く

バッテリーの矢印の方向を下にして、バッテリーを本体に押し付けて装着する

・バッテリーを斜めに挿し込むと本体やバッテリーの端 子を破損する恐れがあります。

3. カバーを閉じる

「カチッ」と音がするのを確認してください。

8. 機械の据え付け

4

 ・据え付け後にバッテリーを装着すると、本機が傾斜します。先にバッテリーを装着した後、据え付け作業 を行ってください。

8.1 求心作業

▶ 手 順 求心望遠鏡を使った求心作業

1. 三脚を据え付ける

脚をほぼ等間隔に開き、脚頭をほぼ水平にします。 脚頭の中心が、測点上に来るように設置します。 石突きを踏んで、脚をしっかり地面に固定します。

2. 本機を三脚に載せる

本機を脚頭上に載せます。 片手で本機を支え、本機の底板にある雌ねじに三 脚の定心かんをねじ込んで固定します。

- 割点にピントを合わせる まず求心望遠鏡をのぞき、求心望遠鏡接眼レンズ つまみを回して焦点板の二重丸にピントを合わせ ます。 次に求心望遠鏡合焦つまみを回して測点にピント を合わせます。
- 4. 測点を求心望遠鏡の二重丸の中央に入れる 整準ねじを使って測点を求心望遠鏡の二重丸の 中央に入れます。

測点のピント合わせ

▶ 手 順 レーザー求心機能を使った求心作業(特別付属品)

- 1. 三脚を据え付け、本機を三脚に載せる ごデ「8.1 求心作業」
- 2. 電源を ON にする
 ① 「9. 電源 ON/OFF」
 画面に電子気泡管(チルト)が表示されます。

 レーザー求心光を ON にする
 【L-ON】を押すと、測点に向かって、底板からレー ザー光が射出されます。

4. レーザー求心光の輝度を調整する
 2ページ目にある【-】【+】を押して、輝度を調整します。

- 5. レーザー光を測点の中心に合わせる
- 6. レーザー求心光を OFF にする チルト画面から別の画面へ移動すると、レーザー求 心光は自動的に OFF になります。

備考

・直射日光があたってレーザースポット光が見えにくい場合は、スポット光付近の日差しをさえぎってご使用ください。

8.2 整準作業

▶ 手 順

- 1. 測点を求心望遠鏡の二重丸の中央に入れる 整準ねじを使って測点を求心望遠鏡の二重丸の中央 に入れます。
- 2. 円形気泡管の気泡を中央に入れる

円形気泡管の気泡の寄っている方向に最も近い三脚の 脚を縮めるか、または最も遠い脚を伸ばして気泡管を 中央に寄せ、さらに他の1本の脚の伸縮によって気泡 を中央に入れます。 気泡管を見ながら整準ねじを使って本機を整準しま す。

3. 電源を ON にする
 <Fルト>に電子気泡管が表示されます。
 ごす「9. 電源 ON/OFF」
 「●」は電子気泡管の気泡を示しています。内側の円は ±1.5′、外側の円は ±6′のラインです。

- **4.**「●」を中央に入れる ·気泡が中央にある場合には、手順7に進みます。
- 5. 望遠鏡を整準ねじA、Bと平行にする

6. 傾斜角を0°にする

X 方向は整準ねじ A、B を、Y 方向は、整準ねじ C を使って傾斜角を O[°]にします。

7. 再び測点を求心望遠鏡の二重丸の中心に入れる (整準台:着脱式) 定心かんを少しゆるめ、求心望遠鏡をのぞきながら 脚頭上で本機を移動させて測点を二重丸の中央に入 れます。 定心かんをしっかり締めます。

(整準台:センタリング式)

センタリング固定ねじを少しゆるめ、求心望遠鏡を のぞきながら二重丸の中心に測点が入るよう本機を 移動させます(本機は±8mmの範囲内で水平に自 由に移動します)。

レーザー求心機能を使って求心作業をした場合は、 もう一度レーザー求心光を射出して確認してください。

1 5 1 5 順 レーザー求心機能を使った求心作業(特別付属品)」

8. 電子気泡管の気泡が中央にあることを確認する 気泡が中央にない場合には、手順6に戻ります。

9. 画面での整準作業を終了する

(ESC)を押すと元の画面に戻ります。

9. 電源 ON/OFF

4

・バッテリーを装着していても電源を ON にできなかったり、電源を ON にしてもすぐに OFF になってし まう場合は、バッテリー残量がないことが原因と考えられます。すぐに充電されたバッテリーと交換して ください。

□ [21. 警告・エラーメッセージ」

▶ 手順 電源 ON

1. 電源を ON にする

[①]を押して電源を ON に します。
 電源が入ると、数秒後に<チルト>が表示されます。
 ℃了「8.2 整準作業」手順3
 (ESC)を押すと観測モードになります。

「チルトオーバー」が表示された場合は、本機が、 傾斜角補正範囲を越えて傾いています。もう一度、 円形気泡管を使い整準を行ってください。その後、 <チルト>を表示させてください。 <チルト>を表示させるには、ステータスバーかス ターキーモードの傾斜角自動補正アイコン 「5.4 スターキーモード」(5)傾斜角自動補正ア イコン

備考

・振動、風などで表示が安定しないときは、<観測条件設定>の「傾斜角補正」の設定を「なし」に変更で きます。

[了[20.1 観測条件]

解し レジューム機能

本機にはレジューム機能があります。「レジューム」とは、中断の後で戻る、あるいは再開するという 意味です。電源 ON 後、前回電源を切ったときの画面が表示されます。また、各種設定の内容も保存さ れます。また、バッテリーがなくなるとレジューム機能は解除され、リセットされた状態になります。 バッテリーがなくなっても約1分間はレジューム機能は保持されます。すぐに充電されたバッテリー と交換してください。

▶ 手順 電源 OFF

1. [①]を長押し(約1秒)します。

4

- ・バッテリーが交換時期になると、ステータスバーのバッテリーアイコンが点滅表示されます。そのときは、できるだけ速やかに作業を中止し、電源をOFFにして、バッテリーを充電してください。
 ・節電のため一定時間操作をしないと、自動的に電びでは、クレークを行いて、「サーレーク」
- 源が OFF になります。<器械設定>の「オートパ ワーオフ」で時間の設定ができます。 ℃了「20.2 器械設定」

9.1 タッチパネルの調整

はじめてお使いになるときやイニシャライズ処理が行 われた後には、起動画面の次に右図のようなタッチパ ネルの調整画面が表示されます。

画面の指示にしたがって、ターゲット(画面の十字) の中心をタップします。反対側の表示機のターゲット (画面の十字)の中心もタップしてください。

備考

・通常お使いのときに、タッチパネルの調整をする場合は、<器械設定>で【タッチパネル】を選択して調整することができます。

 「了「20.2 器械設定」

9.2 ソフトウェア上の障害が発生したら

観測データや画面の動きに異常が認められた場合は、リセット処理を行います。リセット処理をして、それ でも機能が回復しない場合には、イニシャライズ処理をします。リセット処理をするとレジュームが破棄さ れます。リセット処理をしてもプログラム モードのデータは保持されますが、できるだけリセット処理を する前にデータをコンピューターに転送してください。

▶ 手 順 リセット処理

- 1. 電源を OFF にします。
- (ENT)を押しながら〔①〕を押します。
 リセット処理が行われ、その後は通常の電源 ON と同じです。
- 解 イニシャライズ処理

リセット処理を行っても正常な状態に復帰しない場合は、イニシャライズ処理を行います。イニシャラ イズ処理を行うと、各種設定は工場出荷時の設定に戻ります。イニシャライズ処理をしてもプログラム モードの現場データは保持されますが、できるだけイニシャライズ処理をする前にデータをコンピュー ターに転送してください。

イニシャライズ処理の手順は、〔☆〕、(S.P.)を同時に押しながら、〔①〕を押します。 イニシャライズ処理が行われ、その後は通常の電源 ON と同じです。 ℃了「20.11 設定のデフォルト復帰」

L 電源を OFF にできないとき

¥

電源を OFF にできないときは、リセットボタンをスタイラス(ペン)で押して電源を OFF にします。

・リセットボタンを押すと、ファイルやフォルダーが壊れることがありますのでご注意ください。

10.外部機器との接続

本機は、*Bluetooth* 無線通信と RS232C 通信に対応しており、データコレクターなどと接続することがで きます。また、USB メモリーと USB 接続にも対応し、データの入出力などが行えます。それぞれの機器の 取扱説明書も併せてご覧ください。

4

- ・Bluetooth 通信は、Bluetooth デバイス搭載製品のみできます。
- ・Bluetooth 通信をする場合は、「4.3 Bluetooth 無線技術について」もご覧ください。

10.1 Bluetooth 通信の設定

本機は Bluetooth 無線技術により、データコレクターとワイヤレスで通信することができます。

▶ 手 順 Bluetooth 通信のための設定をする

- 1. *Bluetooth* 通信を選択する
 - 設定モードの「通信」を選択して、「通信条件」タ ブで通信条件の設定をします。

¥

- *Bluetooth* 通信中に通信条件の設定を変更すると、
 通信は切断されます。
- <通信設定>では、ステータスバーのアイコン
 () はタップできません。
- ・当社が推奨しているプログラムが搭載されている データコレクターと Bluetooth通信する場合には、
 (2) ~ (4)の項目は工場出荷時の設定のまま使用 できます。接続ができない場合は、データコレク ターと本機の通信条件を確認してください。
- ・(3)、(4)は GTS コマンドを使用する機器を接続 するときに設定します。

● 設定項目と各選択肢(*:工場出荷時の設定)

通信モード RS232C */ Bluetooth

- (2) チェックサム あり/なし*
- (3) デリミター
 ETX * / ETX+CR / ETX+CR+LF
 データの最後にキャリッジリターン(CR)やラインフィード(LF)を付加するかどうかを設定します。
 (4) ACK モード
- $\begin{array}{c} (4) \quad \text{ACK } \underline{-} \\ \text{Off } / \text{On } \\ \end{array}$

設定		×
1.観測条件	⊿ 6.単位	
말 2.器械	🖶 ७.७८९२४	
C 3.器械定数	% 8.パスワード	
≫ 4.EDM	❷ 9.日付時刻	9.0
🔋 5.通信		 72
	戻る	

2. Bluetooth 情報を表示する

「*Bluetooth*」タブを選択すると、本機の *Bluetooth* の情報が表示されます。 ここに表示される「アドレス」は、接続する機器に 登録してください。

4

 ・右の画面では、*Bluetooth* 接続を開始しないでく ださい。

3. 設定を終了する

【OK】を押して、設定を終了します。 続けて *Bluetooth* 通信を行います。 **€了**「10.2 本機と Bluetooth 機器との通信」

解 *Bluetooth*アドレス

Bluetooth機器固有の番号です。Bluetooth機器を識別するために使用します。この番号は、0~9 までの数字とA~Fまでのアルファベットで構成された 12桁の文字列です。機器によっては、デバ イスアドレスと表記されている場合があります。

10.2 本機と Bluetooth 機器との通信

4

- ・Bluetooth通信中は、通常の使用時よりもバッテリーを消耗します。
- ・通信をする *Bluetooth* 機器(データコレクターなど)の電源を入れて、通信設定が行われていることを確 認してください。
- ・イニシャライズ処理をすると、接続設定などが工場出荷時の状態に戻ります。もう一度接続設定をしてください。 『こう 「10.1 Bluetooth 通信の設定」

▶手順

1. 本機で、通信に必要な設定をする

「10.1 Bluetooth 通信の設定」手順 Bluetooth 通信のための設定をする

2. 通信を始める

データコレクターから *Bluetooth* 接続をします。 『アデータコレクターに搭載されているソフトウェア の取扱説明書

4

・パスキーを要求された場合は、0000(0を4つ)を 入力します。

接続が確立すると、ステータスバーの表示が 📊 にな ります。

4

・通信環境が良好なのに *Bluetooth* 接続に失敗する場合は、*Bluetooth* 初期化モードで起動してください。

初期化の手順は、〔☆〕、(TAB)を同時に押しながら、〔①〕を押します。

画面に "*Bluetooth* Initialize Mode Are you sure ?" とメッセージが表示されます。

初期化を行うときは Yes を選択して(ENT)を押し ます。

初期化を行った後、電源が入ると、トップメニュー が表示されます。

- ・*Bluetooth* 初期化モードで起動すると、*Bluetooth* アドレスが変更されます。
- 3. 通信を終了する

データコレクターから接続を終了します。

4

- ・*Bluetooth* 接続を終了した直後は、再接続できない場合があります。そのような場合は、数十秒間待ってから再接続してください。
- ・圏外や障害物が原因で *Bluetooth* 接続が切断された 場合、*Bluetooth* 機器が自動的に再接続されるまでに 数十秒かかる場合があります。

10.3 USB 機器との接続

本機には2種類の USB ポートがあります。

4

- ・弊社は、すべての USB 機器との対応を保証するものではありません。
- ・対応するコンピューターは、Windows 7/10 で、USB 接続が可能なものです。

対応する USB 機器とケーブルで接続することができます。

ポート名	対応する機器
USB ポート 1	USB メモリー
USB ポート2(mini-B)	コンピューターなど

USB ポート2を使用し、本機をコンピューターなどと接続することができます。

4

・USB ポート 2 から USB ケーブルを外す場合は、ケーブルの破損防止のため、ゆっくりはずしてください。

▶ 手 順 本機とコンピューターを接続する

 本機の電源を OFF にして、本機とコンピューター を USB ケーブルで接続する USB ポート2に接続します。

備考

・コンピューターは電源が ON の状態でかまいません。

2. 本機の電源を ON にする

(ENT) を押しながら〔①]を押します。画面に USB モードの起動を確認するメッセージボックスが表示さ れます。【はい】をタップしてください。 本体の表示部には< USB Mode >と表示されます。 また、コンピューターの画面には<リムーバブルディ スク>と表示されます。

備考

 ・本機のコンピューター上の表示は Windows の設定 により<リムーバブルディスク>でない場合があり ます。

4

本機が正しく動作しなくなるおそれがありますの で、以下のことをお守りください。

- ・PC 上のくリムーバブルディスク>内に元々設定し てあるフォルダーは、階層や名称の変更をしない でください。
- ・PC 上のくリムーバブルディスク>をフォーマット しないでください。

3. USB 接続を終了する

コンピューターのタスクバーの<ハードウェアの安 全な取り外し> 😵 を実行し、USB ケーブルをコン ピューターと本機から取りはずします。

4. 本機の電源を OFF にする

[①]を長押しします。

10.4 通信ケーブル (RS232C) による接続

▶ 手 順 通信ケーブルの基本設定

1. ケーブルを接続する 『ご 接続ケーブル:「25. 付属品」

2. RS232C 通信を選択する

設定モードの「通信」を選択します。「通信条件」 タブで通信条件の設定をします。「通信モード」は 「RS232C」を選択します。

通信設定				×
通信条件	RS232C	Bluetoot	h	•77
通信モード		RS232C		0 (1) 0
チェックサム	T.	3U	•	PPm
デリミタ	E	TX	•	Ŀ
ACKE-ŀ	0	Off	•	
				_1 57
				9 2
			UK	

	×
😲 USB ma	ode?
(はい(<u>Y</u>)	いいえ(<u>N</u>)

3. RS232C の通信設定をする

「RS232C」タブで、通信条件に合わせて、各項目 を設定します。*は工場出荷時の設定です。

● 設定項目と各選択肢(*:工場出荷時の設定)

- (1) 通信速度(ボーレート)
 1200 / 2400 / 4800 / 9600 * / 19200
 / 38400bps
- (2) データ長7 / 8 * ビット
- (3) パリティー なし*/奇数/偶数
- (4) ストップビット長 1 */2 ビット

通信設定				×
通信条件	RS232C	Bluetooth		•77
ボーレート		600bps		0 1
データ長	8	3E´ット	•	PPm
パリティー	ta	3U	-	
ストップビット	1	.ยังห	-	9.0
				_1
		-	OV	9/2
			UK	

4

・ターゲットを視準したときに対物レンズから太陽光などの強い光が入射すると、機械の誤動作の原因にな ることがあります。付属のレンズフードを取り付けてください。

▶ 手 順

- 望遠鏡十字線にピントを合わせる 望遠鏡を明るく特徴のない背景に向けます。 望遠鏡接眼レンズをのぞき、接眼レンズを右回転でいっぱいまで回し、次に徐々に左に回して、十字線がぼける寸前で止めます。 こうすると、目に負担の少ない状態となり、頻繁に 再調整する必要がありません。
- 2. ターゲットを視準する 照準器を使ってターゲットを視野に入れます。水平 微動つまみ・望遠鏡微動つまみを使うと微調整がで きます。
- 3. ターゲットにピントを合わせ、さらに望遠鏡十字 線の中心とターゲットを合わせる 合焦つまみで目標物にピントを合わせます。 目標物の中心と十字線を正確に合わせます。
- 視差がなくなるまでピントを合わせる
 目標像と十字線の間に視差がなくなるまで、合焦つ まみでピントを合わせます。

 解止
 視差をなくす
 望遠鏡をのぞきながら、頭を軽く上下左右に振っても目標像と望遠鏡十字線が相対的にずれないように ピントを合わせると、「視差をなくす」ことができます。視差がある状態で観測を行うと、測定値に大 きな誤差を生じます。必ず視差をなくす作業を行ってください。

12.角度測定

ここでは、観測モードでの基本的な角度測定の手順を説明します。

・ソフトキーの割り付けを作業用途や作業者の使い勝手に合わせて変更できます。 『♪「20.6 ソフトキーのユーザー割り付け」

12.1 2 点間の夾角測定(水平角 0° 設定)

2 点間の夾角を測るには、「水平角の0°設定」の機能を用います。

▶ 手 順

 1.1点目のターゲットの方向に機械を向け、ター ゲットを視準する
 ごデ「11.望遠鏡のピント合わせとターゲットの視 準」

2. 1 点目を水平角 0°に設定する 観測モードのソフトキー 1 ページ目の【0 セット】 を 1 回押すと、【0 セット】が点滅します。続いて もう一度押すと、1 点目の水平角が 0°に設定され ます。

Q

 \cap

3.2 点目を視準する

画面に表示されている「水平角」が、2 点間の夾角 です。

12.2 決まった角度からの測定(水平角の任意角度設定)

ある方向の水平角に任意の角度を設定し、その方向からの角度を測定することができます。

▶ 手 順

- 1.1 点目を視準する
- 2. 任意角度設定メニューに入る 観測モードのソフトキー2ページ目で【任意角】を 押します。<任意角設定>が表示されます。
- 3.1 点目を任意の角度に設定する 設定したい角度を「角度入力」タブの水平角に入力 します。
 - ・座標入力、方向角入力でも設定できます。 『ア「14.2 方向角の設定」

4. 入力値を確定する
 【OK】を押すと、水平角に設定した値が表示されます。

			現在の角	度
任意角設定				×
角度入力	座標入力	」方向角.	入力	•77
水平角		80	 *00'00"	
設定したし	∖角度を入力	りしてください	,	9.0
水平角		15	57.1200	_1 💌
			OK	
観測				×
SHV (185)	雛 グラフィッ	ク		•77
斜距离隹				
鉛直角	8	89°53	'43"	
水平角	15	57°12	'00"	.1 .1 .7
EDM	千川人	ロセンルト	測定	D1

5.2 点目を視準する

設定した値からの水平角が表示されます。

備考

- ・観測モードで【ホールド】を押して、水平角表示をホールドする方法でも、水平角を任意角度に設定する ことができます。
 - ℃了【ホールド】の割り付け:「20.6 ソフトキーのユーザー割り付け」

12.3 測角してデータを出力

測角を行ったときにその場で測定結果をホストコンピューターなどの外部機器に出力する機能です。 「了「10. 外部機器との接続」、接続するケーブルの種類:「25. 付属品」、制御コマンドや通信フォーマットの詳細:「コミュニケーションマニュアル」

▶ 手 順

- 1. 本機と外部機器を接続する
- 2. 観測モードにソフトキー【HV アウト T】または【HV アウト S】を割り付ける
 ごデ「20.6 ソフトキーのユーザー割り付け」

備考

・ソフトキーを押すと以下のフォーマットで出力されます。 【HV アウトー T】:GTS フォーマット 【HV アウトー S】:SET フォーマット

3. 目標点を視準する

4. 測角データを出力する 観測モードで【HV アウトーT】または【HV アウトーS】を押すと、測定データが外部機器に出力されます。

13.距離測定

観測モードでの距離測定の準備として、必要に応じて次の項目の設定を行ってください。

- ・距離測定モード
- ・ターゲットタイプ
- ・PC(プリズム定数補正値)
- ・ppm (気象補正係数)
- ・EDM 絞り CF「20.2 器械設定」
- ・ソフトキーの割り付けを作業用途や作業者の使い勝手に合わせて変更できます。 『『 20.6 ソフトキーのユーザー割り付け」

・レーザー照準を使った場合は、測距後必ずレーザー射出を OFF にしてください。測距が停止してもレー ザー照準のレーザー光は OFF になりません。

4

- ・ターゲットタイプはお使いになるターゲットに合わせて必ず正しく設定してください。本機ではターゲットタイプの設定によって距離測定の表示範囲を切り替えたり距離計の光量状態を調整するため、測定するターゲットと設定が合っていないと正しい測定結果が得られないことがあります。
- ・対物レンズが汚れていると正しい測定結果が得られないことがあります。付属のレンズ刷毛を使って細かな塵を払ってから、レンズに息を吹きかけて曇らせ、付属のワイピングクロスで軽くふいてください。
- ・ノンプリズム測定で、測距光を遮るものがある場合や測定対象物の後方に反射率の高いもの(金属面や 白っぽいもの)がある場合、測定結果が正しくないことがあります。
- ・かげろうがある場所での距離測定では、測定結果にばらつきが生じることがあります。複数回測定し、その結果を平均した値を採用されることをお奨めします。

13.1 受光光量のチェック

長距離の測定では、受光光量のチェックを行うと便利です。これは、視準したターゲットから十分反射光が 返ってきているかどうかを確認するものです。

<u> /</u>注意

・受光光量のチェック中は、レーザーが射出されています。

4

 ・受光チェック後すぐに測距を開始する場合は、望遠鏡十字線がターゲットの中心と正確に合っているかを 確認してください。受光光量が十分で「●」が表示されても、ターゲットの中心と十字線がずれていると 実際には正確な距離が測定されません。

▶ 手 順

1. ターゲットを正確に視準する

2. 受光光量を表示する

観測モードの【光量】を押します。 『ア【光量】の割り付け:「20.6 ソフトキーのユー ザー割り付け」

【光量 ON】を押すと、受光光量がゲージで表わされ ます。

- ・ か多いほど、反射光量が多いことを表します。
- ・「●」は、測定に十分なだけの光量があることを表します。
- ・「●」が表示されないときは、もう一度ターゲット を正確に視準し直してください。

【ブザー】: 測距が可能なときにブザーを鳴らす設定 をします。ボタンを押すと ON / OFF が切り替わ ります。 【測定】: 観測モードに戻ります。距離と角度の測定 をします。

3. 受光光量のチェックを終了する
 【光量 OFF】を押すと、チェックが終了します。
 (ESC)または【×】を押すと、元の画面に戻ります。

備考

・「●」が表示されず、かつ ふり切っている状態が続くときは、最寄りの営業窓口にご連絡ください。

・2分間キー操作がない場合も自動的に一つ前の画面に戻ります。

13.2 距離と角度の同時測定

距離測定と角度測定を同時に行います。

▶ 手 順

 プリズムの方向に本機を向ける 照準器を使って本機上部と望遠鏡をプリズムに向け ます。
 『了「11. 望遠鏡のピント合わせとターゲットの視 準」

2. 測定を開始する

観測モードのソフトキー1ページ目で【測定】を押 すと測定が始まります。

その後、測定した距離、鉛直角、水平角が表示され ます。

3. 測定を終了する

【停止】を押して、測定を終了します。

備考

- ・単回測定の場合は、測定が1回で自動的に止まります。
- ・精密平均測定では、距離データは「斜距離1、斜距離2、… 斜距離9」と表示され、指定した回数の測距 が終了すると「斜距離A」に距離の平均値が表示されます。
- ・ターゲットタイプがノンプリズムでトラッキング測定を行った場合、測定値が 250m を超えると距離 データは表示されません。
- ・最後に取得した測定データは、電源を OFF にするまで保持されます。【呼出】を押すとこのデータを表示 させることができます。

℃了【呼出】の割り付け:「20.6 ソフトキーのユーザー割り付け」

|13.3 測距してデータを出力

測距を行ったときにその場で測定結果をホストコンピューターなどの外部機器へ出力する機能です。 『ア 各種接続方法:「10. 外部機器との接続」 『ア 接続するケーブルの種類:「25. 付属品」 『ア 制御コマンドや通信フォーマットの詳細:「コミュニケーションマニュアル」

▶ 手 順

- 1. 本機と外部機器を接続する
- 2. 目標点を視準する
- 3. 測距データを出力する

観測モードで【HVD アウトー T】または【HVD アウトー S】を押 すと、測距が始まり、目標点の測定結果が外部機器に出力されま す。 ℃ア 出力タイプ:「20.1 観測条件」、「20.6 ソフトキーのユーザー 割り付け」

4. 出力を終了する

【停止】を押すとデータ出力を終了し、観測モードに戻ります。

13.4 REM 測定

REM 測定は、送電線、橋梁、吊りケーブルなどターゲットを直接設置できない点まで高さをスピーディー に測定するものです。

- 目標点の高さは次の式で算出されます。
 - Ht = h1 + h2

 $h2 = S \sin \theta_{Z1} \times \cot \theta_{Z2} - S \cos \theta_{Z1}$

・REM 測定メニューのソフトキーを作業用途や作業者の使い勝手に合わせて観測モードに割り付けること ができます。

℃了「20.6 ソフトキーのユーザー割り付け」

▶ 手 順

1. ターゲットを目標物の鉛直下または直上に設置 し、視準高を巻尺などで測る

【高さ】を押して視準高を入力します。

 REM 測定メニューに入る メニューモードの「REM 測定」を選択します。

3. ターゲットを測定をする ターゲットを視準して【測定】を押します。【停止】 を押して測定を終了します。

REM測定				×
プリズムを勧	観測してくだ	さい		•77
				0 (D
斜距離				
鉛直角		89°54	4'01"	
水平角		128°0	2'35"	B~₪ 1
				5
	高さ	測定		

測定した距離・鉛直角・水平角が表示されます。

目標物を視準して、【REM】を押すと REM 測定が 始まります。「REM 高」に地上から目標物までの高

・ターゲットを再観測するには、ターゲットを視準

・REM 測定を続けるには【REM】を押します。

【停止】を押して、測定を終了します。

REM測定				×
REM高				•77
		-		PPM
赤斗正已尚住		6.	534"	
鉛直角		92°32	2'04"	
水平角		164°10	0'05"	_1
				P
	高さ	測定	REM	
REM到完				×
REM測定				×
REM測定 REM高		1.3	200 ^m	×
REM測定 REM高		1.3	200 ^m	× •//
REM測定 REM高		1.: 6.	200 ^m	
REM測定 REM高 外距離 鉛直角		1.: 6.: 92°3	200 ^m 534 ^m 2'09"	
REM測定 REM高 纠距離 鉛直角 水平角		1.2 6.2 92°32	200 ^m 534 ^m 2'09"	
REM測定 REM高 斜距離 鉛直角 水平角		1. 6. 92°32 164°10	200 ^m 534 ^m 2'09" 0'08"	

備考

4. REM 測定をする

さが表示されます。

して【測定】を押します。

・測定データが既にある場合は、手順2でメニューモードで「REM 測定」を選択すると、手順4に進みま す。REM 測定が開始していますので【停止】を押して、測定を終了します。 座標測定では、あらかじめ入力した器械点座標、器械高、視準高、後視点の方向角をもとに、目標点の三次 元座標を求めます。

・座標測定メニューのソフトキーを作業用途や作業者の使い勝手に合わせて観測モードに割り付けることが できます。

℃了「20.6 ソフトキーのユーザー割り付け」

14.1 器械点データ入力

ここでは、座標測定の準備として、本機を設置した測点(器械点)の座標、器械高、視準高を設定します。

▶手順

- 器械高・視準高をあらかじめ巻き尺などで測って おく
- 2. 座標測定メニューに入る メニューモードの「座標測定」を選択します。

3. 器械点を設定する

「器械点設定」を選択します。 機械を設置した測点(器械点)の座標、器械高、視 準高を入力します。

- ・【読込】を押すと SDR8 サーベイにあらかじめ登録 してある座標データを呼び出して器械点座標とし て設定できます。
 - 『FX シリーズ SDR8 サーベイプログラム解説
 書 5. 画面の基本操作」

高さ設定			×
器械点X	3	70.000	•77
器械点Y		10.000	
器械点Z	1	00.000	
			Ŀ
器械高	1	400 m	9.0
視準高	1	200 m	_1
	 		, y
読込		OK	

4. 入力値を確定する

入力後は【OK】を押します。<任意角設定>に移 ります。

14.2 方向角の設定

すでに設定した器械点座標と後視点座標をもとに、後視点の方向角が計算されます。

▶ 手 順 座標入力による設定

- 1. 任意角度設定メニューに入る <座標測定>で「後視設定」を選択します。<任意 角設定>が表示されます。
 - ・「14.1 器械点データ入力」の手順4からも任意角度 設定メニューに入れます。

2. 後視点の座標を入力する

「座標入力」タブを選択して、後視点の座標を入力 します。

・【読込】: SDR8 サーベイにあらかじめ登録してある座標データを呼び出して使うことができます。
 『ア「FX シリーズ SDR8 サーベイプログラム解説書 5. 画面の基本操作」

・【測定】:後視点の距離チェックを行うときは、後 視点を視準して【測定】を押します。【停止】を押 すと、計算から求められた距離、測定距離および その差が表示されます。確認して【はい】を押す と、方向角を設定して<座標測定-座標測定>に 移ります。

・【H方向角】/【H入力】/【Hなし】/
 【HO[°]】:水平角の設定方法を表示します。押すと、設定方法を切り替えます。

3. 後視点を設定する

入力後は【OK】を押します。後視点を設定して、 <座標測定>に移ります。

▶ 手 順 角度入力による設定

- 任意角度設定メニューに入る
 <座標測定>で「後視設定」を選択します。<任意
 角設定>が表示されます。
 - ・「 器械点データ入力 手順 4」からも任意角度設定 メニューに入れます。
- 水平角を入力する
 「角度入力」タブを選択して、設定したい角度を
 「水平角」に入力します。

任意角設定		×
角度入力座	入力 方向角入力	•77
水平角	0*23'10"	
設定したい角度	と入力してください	9.0
水平角	125°12'00"	_1 ∳∕∕
	OK	

 後視点を設定する 設定後は【OK】を押します。水平角を設定してく 座標測定>に移ります。

▶ 手 順 方向角入力による設定

- 任意角度設定メニューに入る
 <座標測定>で「後視設定」を選択します。<任意
 角設定>が表示されます。
 - ・「 器械点データ入力 手順 4」からも任意角度設定 メニューに入れます。

2. 方向角を入力する

- 「方向角入力」タブを選択して、設定したい角度を 「方向角」に入力します。
- ・【H方向角】/【H入力】/【Hなし】/
 【HO[°]】:水平角の設定方法を表示します。押すと、設定方法を切り替えます。

□ 方向角の設定

 水平角の設定方法」

任意角設定			×
角度入力 座標入ナ	」方向角.	77	17
水平角	0	' 23'10"	0 •••
設定したい角度を入っ	わしてください	3	
方向角	22	0.1255	88
水平角	125	5°12'00"	_ ∳21
H方向角		OK	

3. 後視点を設定する

設定後は【OK】を押します。方向角を設定してく 座標測定>に移ります。

解 水平角の設定方法

H方向角(水平角を方向角と同じ値に設定)/H入力(水平角と方向角をそれぞれ入力)/Hなし (方向角のみ設定)/HO[®](水平角をO[®]に設定)

14.3 三次元座標測定

器械点、後視点の設定後、目標点の観測を行って目標点の座標値を求めます。

目標点の座標値は次の式で計算されます。

- X_1 座標 = X_0 + S×sinZ×cosAz
- Y_1 座標 = Y_0 + S×sinZ×sinAz
- Z_1 座標= Z_0 + S×cosZ + ih th

X0: 器械点 X 座標 S: 斜距離 ih: 器械高 Y0: 器械点 Y 座標 Z: 天頂角 th: 視準高

ZO: 器械点 Z 座標 Az: 方向角

座標データのうち「Null」と表示されている項目は計算対象外とされます。Oとは異なります。

▶手順

- 1. 目標点のターゲットを視準する
- 2. 座標測定を開始する

メニューモードの「座標測定」で「座標測定」を選 択します。

【測定】を押すと測定を開始します。【停止】を押し て測定を終了します。目標点の座標値が表示されま す。「グラフィック」タブを選択すると座標値がグ ラフィックで表示されます。

・【高さ】を押すと器械点データの再設定ができま す。次の目標点の視準高が異なる場合は、観測を 行う前に視準高を入力しなおします。

座標測定 -)	座標測定			×
座標測定	グラフィック			•77
х		6	41.335	0
Υ		3.	48.240	maa
Z			12.400	
斜距離		19	.997 m	
鉛直角		87	'17'22"	
水平角		131	'05'37"	
	高さ		測定	

3. 次の目標点を観測する 次の目標点を視準して【測定】を押すと測定が開始 します。続けて複数の点を測定します。

4. 座標測定を終了する

(ESC) または【×】を押すと<座標測定>に戻り ます。

既知点を複数測定することによって、器械点の座標値を算出します。

- ・測定のできる既知点は、測距の場合は2点以上10点まで、測角の場合は3点以上10点までです。
- ・既知点の数が多いほど、また、距離を測定する点数が多いほど、得られる座標値は精度が高いものになります。
- ・後方交会メニューのソフトキーを作業用途や作業者の使い勝手に合わせて観測モードに割り付けることができます。

℃了「20.6 ソフトキーのユーザー割り付け」

▶ 手 順

1. 後方交会メニューに入る メニューモードで「後方交会」を選択します。

רבֿ⊀		×
₩ 1.座標測定	♥ 5.対辺測定	•// 0
▼ 2.杭打ち	👗 6.後方交会	
ジ 3.オフセット測定	▶ 7.面積計算	
🔏 4.REM測定		_1 ⊽2
	戻る	

2. 既知点の設定をする

既知点1点目の座標と視準高を入力します。 1点目の設定が終わったら【後】を押して2点目の 設定に移ります。

- ・【読込】を押すと、SDR8 サーベイにあらかじめ登録されている座標を呼び出して使うことができます。
- 『FX シリーズ SDR8 サーベイプログラム解説
 書 5. 画面の基本操作」
- ・【前】を押すと、前の点の設定に戻ります。

すべての既知点の設定が済んだら【OK】を押しま す。測定画面に移ります。

3.1 点目を測定する

1 点目を視準して【測定】を押すと測定が開始し、 測定結果が表示されます。

・【測角】を押すと測距なしの測定を行います。

4. 1 点目の測定結果を確定する 【はい】を押します。

- ・ここで視準高を入力し直すこともできます。
- ・【いいえ】を押すと、手順3の画面に戻りますの で、もう一度測定します。

5.2 点目以降を測定する

手順3~4と同様に観測を続けます。 計算に必要な既知点の観測が終了すると、【計算】 が表示されます。

後方交会 - 贯	{ 知点 登錄			×
既知点番号	1		•	
座標X		12	40.586	
座標Y		12	34.000	
座標Z		12	33.690	
視準高		C).000 m	
				7
読込	前	後	OK	

後方交会 - 既知点測定			×
既知点番号		1	•77
Х	12	240.586	0
Y	12	234.000	PPM
Z	12	233.690	
余斗足下离推			
鉛直角	89	'00'56"	8.0
水平角	143	42'11"	□ 72
	測角	測定	

î	後方交会 - 測定結果	×	
		7.164 m	
	鉛直角	112*17'08"	
	水平角	178*32'50"	
	視準高	0.000 m	
Ī	はい	いいえ	۲í –

6. 計算結果を表示させる

【計算】を押すか、最後の既知点の観測後【はい】 を押すと、器械点座標と観測の精度を示す標準偏差 (σ X、 σ Y、 σ Z)が表示されます。

備考

- ・測角のみで後方交会した場合は、器械点 Z は表示 されません。
- ・【再測】を押すと、既知点を1点目から再観測した り、最終の既知点のみを再観測できます。

後方交会 - 結果			×
器械点X		-0.004	•77
器械点Y		0.152	0
器械点Z		0.062	PPM
σΧ		0.0040	
σY		0.0029	
σZ		0.0000	
	再測	OK	

1	後方後会 - 方向角セット 🛛 🗙	×
	 方向角をセットしますか?	• 77 ① 0
	セット方法 水平角 = 方向角 💌	
		 ∳72
	(JU) (NU)Z	

- 7. 後方交会を終了する方向角を設定する 手順6の画面で【OK】を押します。求められた器 械点に対し、1点目の既知点を後視点として方向角 を設定するときは、セット方法を選択して【はい】 を押します。メニューモードに戻ります。
 - ・【いいえ】を押すと方向角を設定せずにメニュー モードに戻ります。

解 水平角の設定方法

水平角=方向角/方向角のみ/水平角0°(水平角を0°に設定)

解 後方交会の計算の手順

後方交会により、本機内部では XY 座標については角度と距離の観測方程式により、最小二乗法を用い て器械点座標を求めます。

Z座標については、平均値を器械点座標とします。

解 後方交会を行う上での注意

未知点(器械点)と3点以上の既知点とが、同一円周上に配置されると、未知点の座標値が算出でき ない場合があります。

・下の図のような配置が望ましい配列です。

・下の図のような場合、正しく算出できない場合があります。

・同一円周上に並ぶ可能性がある場合は、以下の3つのうちのどれかを選んで実行してください。 ①器械点をなるべく三角形の中心近くに移動する

②円周上にない既知点をもう1点観測する

③3点のうち1点以上距離設定を行う

- 4
- ・各既知点間の夾角が狭すぎると、器械点座標を算出できない場合があります。特に、器械点と既知点との 距離が長くなるほど、各既知点間の夾角が狭いことを想定しにくくなります。また、同一円周上に各点が 配列されやすくなりますので注意してください。

16.杭打ち測定

杭打ち測定は、目標とする点の位置の値(杭打ちデータ)をあらかじめ本機に入力し、視準している点が杭 打ち点からどのくらい離れているかを表示させて杭打ち点の位置を探す測定方法です。 左右のずれ、距離のずれおよび座標のずれは、以下のような式で計算され、表示されます。

左右のずれ 表示値(角度表示) = 水平角の杭打ちデータ — 測定水平角 表示値(距離表示) = 測定水平距離 × tan(水平角の杭打ちデーター測定水平角)

斜距離のずれ(距離表示が、水平距離・高低差の場合も同様です) 表示値(斜距離表示)= 測定斜距離 一斜距離の杭打ちデータ

X 座標のずれ(座標表示が、Y・Z の場合も同様です) 表示値(座標値)= 測定 X 座標 - X 座標の杭打ちデータ

高さのずれ(REM 杭打ち) 表示値(高さ表示)= 測定 REM ー 杭打ち REM データ

- ・杭打ちの方法には距離の杭打ち、座標の杭打ち、REM 測定の杭打ち、の3つの方法があります。
- ・杭打ち測定メニューのソフトキー割り付けを作業用途や作業者の使い勝手に合わせて変更できます。 『こう「20.6 ソフトキーのユーザー割り付け」

16.1 ガイドライトの活用

ガイドライトを「ON」に設定しておくと、ライトの点滅で本機の状態を遠くからでも知ることができ、ライトの点滅と色でターゲットの移動指示ができるので、ポールマンの移動が効率的に行えます。 プ ガイドライトの ON/OFF:「5.1 基本のキー操作」

・ガイドライトのパターンを設定することができます。 ご了「20.2 器械設定」

4

・ガイドライトを ON に設定していても、ターゲットタイプがノンプリズム設定の測距時と受光光量チェック時は、ガイドライト OFF になります。

ライトの状態	意味
だんだん速くなる点滅	(ポールマンから見て)前方にターゲットを移動
だんだん遅くなる点滅	(ポールマンから見て)後方にターゲットを移動
速い点滅	前後位置が合っている
赤	(ポールマンから見て)左方向にターゲットを移動
禄	(ポールマンから見て)右方向にターゲットを移動
赤と緑の両方	左右位置が合っている

● ガイドライトの状態と意味

16.2 水平角と距離から杭打ち

基準の方向からの水平角と、原点(器械点)からの距離をもとに杭打ち点を求めます。

▶ 手 順

1. 杭打ちメニューに入る メニューモードで「杭打ち」を選択します。<杭打 ち>が表示されます。

רבֿ⊀		×
1.座標測定	♡ 5.対辺測定	•// ① 0
👖 2.杭打ち	瀿 6.後方交会	PPm
ジ 3.オフセット測定	▶ 7.面積計算	
"∠ 4.REM測定		_1 🗭
	戻る	

角度の基準となる点を視準し、基準として設定する
 <

JF 「FX シリース SDR8 サーベイ ノログラム解説
 書 5. 画面の基本操作」

- 後視点の方向角を設定する 後視点の方向角を設定します。【OK】を押すと、 <杭打ち>に戻ります。
 『了「14.2 方向角の設定」
- 4. 杭打ち点の設定をする

<杭打ち>の「杭打ち設定」を選択して、<角度距離杭打ち-杭打ち設定>を表示します。「目標水平 角」に基準の方向と杭打ち点の夾角を、「目標斜距 離」に原点(器械点)から杭打ち点までの距離を目 的に応じた距離モードで入力します。

・【SHVR】を押すと、距離モードが「水平距離」、
 「高低差」、「REM 高」、「斜距離」に切り替わります。

・【読込】を押すと SDR8 サーベイにあらかじめ登録 してある座標データを呼び出して杭打ち点座標と して設定できます。座標読み込みをすると、距離 値の入力モードによる値が計算されて設定されま す。

「FX シリーズ SDR8 サーベイプログラム解説
 書 5. 画面の基本操作」

- ・ソフトキー2ページ目の【座標】を押して目標座 標を入力して【OK】を押すと、入力された座標か ら杭打ち目標距離や角度を計算します。
- 角度距離杭打ち 杭打ち設定 × TT斜距離 距離モード ſ۵ 0 目標水平角 40°50'00" **0** 目標斜距離 10.000 m 視準高 1.500 m 1 * 9.0 .1 7 読込 Shvr P1 OK.

5. 入力値を確定し、目標の方向まで本機を回転させる

入力後は【OK】を押します。杭打ち画面に移りま す。

・【設定】を押すと、杭打ち精度を設定できます。 ここで設定した精度内に入った時に方向指示が両 矢印になります。

角度距離杭	打ち - 杭打ち			×
測定 グラ	ワィック			•77
		х		0
		Y		PPm
		Z		
< <u> </u>		斜		
14'18'		ZA	87°31'11"	8.0
		HAR	55°08'53"	
	Shvr	設定	測定	

6. 距離の杭打ち測定を開始する

視準線上にターゲットを設置し、【測定】を押して 測距を開始します。

杭打ち点までの移動距離、移動の方向(矢印で表示)が表示されます。視準点(現在ターゲットを設置している点)の測定結果も表示されます。

- ・移動方向指示。赤色は位置が合っている状態です。
 - ⊲左へ :(本機から見て)左方向にターゲット を移動
 - ▷右へ : (本機から見て) 右方向にターゲット を移動
 - ⊲▷ : 左右位置が合っている
 ▼前へ : (本機から見て) 手前にターゲットを
 移動
 - ▲後へ : (本機から見て)後方にターゲットを 移動
 - ▲▼ :(本機から見て)ターゲットの前後位 置が合っている
 - ★上へ :ターゲットを上に移動
 - ▼下へ :ターゲットを下に移動
 - ★▼ :ターゲットの上下位置が合っている
- ・【SHVR】を押すと、距離値の表示モードが「水平 距離(H)」、「高低差(V)」、「斜距離(R)」、「斜距 離(S)」に切り替わります。大文字になっている のが選択されているモードです。
- ・【設定】を押すと、杭打ち精度を設定できます。 ここで設定した精度内に入った時に方向指示が両 矢印になります。
- 7. ターゲットを移動して杭打ち点の位置を探す 杭打ち点までの距離が Om になる位置までターゲッ トを移動します。ターゲットの位置が許容範囲内に 入ると、上下、左右および手前・後方矢印それぞれ 両方が表示されます。

/ 移動方向指示

角度距離杭	75 - 杭打ち			×
111111	i7ィック			•77
⊲ 左へ		0°59	9'15"	
		1.3	319 ^m	
斜距離		11.	319 ^m	<u>_</u>
鉛直角		87°0	7'06"	9.0
水平角		41°49	9'15"	_1 ∳72
	Shvr	設定	測定	

角度距離杭打ち - 杭打ち			×
測定 グラフィック			•77
	х	1242.550	0
	Y	1241.395	PPm
59'15"	Z	1234.569	
	斜	11.319m	
1 310	ZA	87°07'06"	80
↓ 1.515	HAR	41°49'15"	
			9
Shvr	設定	測定	

角度距離杭持	15 - 杭打ち	ales de la Calendar Ales de Calendar		×
測定 グラ	フィック			•77
		0°0	0'00"	
AV		0.	000 ^m	
斜距離		11.	319 ^m	<u>_</u>
鉛直角		87°0	7'05"	9.0
水平角		40°5	0'00"	_1 5 2
	Shvr	設定	測定	

角度距離杭打ち - 杭打ち			×
測定 グラフィック			•77
	х	1242.550	0
T 0 000	Y	1241.395	U maa
* 0.000	Z	1234.569	
	斜	11.319 m	
00'00	ZA	87°07'05"	!!
_	HAR	40°50'00"	1
Shvr	設定	測定	

8. 杭打ち測定を終了する

(ESC)を押すとく杭打ち設定>に戻ります。次の 杭打ち点を設定して、杭打ち測定を続けます。

16.3 座標から杭打ち

求める点の座標データを入力すると、その方向角と器械点からの距離が計算されます。その後水平角と距離 測定を行うと、求める点までの差が表示されます。

- ・あらかじめ杭打ち点を登録しておき、順に杭打ちを行うことができます。50 点まで登録できます。
- ・Z 座標まで求める場合は、視準高の変わらないポール等にターゲットを取り付けて使用してください。

▶ 手 順

 杭打ちメニューに入る メニューモードで「杭打ち」を選択します。
 <杭打ち>が表示されます。

רבֿ≮		×
■ 1.座標測定	〒 5.対辺測定	• 77 ① 0
🚺 2.杭打ち	▶ 6.後方交会	PPm
🕅 3.オフセット測定	▶ 7.面積計算	
L ⁴ 4.REM測定		_1 🗖
	戻る	

2. 器械点と後視点を設定する

<杭打ち>の「器械点設定」を選択して、<高さ設 定>を表示します。必要に応じて後視点の設定をし ます。 〔了「水平角と距離から杭打ち 手順2~3」

杭打ち		×	
井 1.器械点設定			
	+		
₩ 2.後視設定			
+	+		
▼ 3.杭打ち設定	▼ 5.座標設定		
+	+		
▼ 4.杭打ち	▼ 6.座標杭打ち		
	戻る		

3. 杭打ち点を登録する

手順2の画面で「座標設定」を選択して、杭打ち点 (これから杭打ちを行う点)をすべて登録しておき ます。【読込】を押して、SDR8サーベイにあらか じめ登録してある座標データを呼び出して登録する か、【追加】を押して新規登録します。

- 「FX シリーズ SDR8 サーベイプログラム解説
 書 5. 画面の基本操作」
- ・ソフトキー2ページ目の【削除】を押すと、選択 した登録杭打ち点を削除します。
- ・ソフトキー2ページ目の【全削除】を押すと、登 録杭打ち点を全て削除します。

座標杭打ち - 座標登録			×
一覧 グラフィック			•77
Pt_01	Х	1240.586	0
	Y	1234.000	0 PPM
	z	1233.690	
			<u>_</u> ل
	斜	6.59m	
	ZA	92°41'35"	1
	HAR	000000"	7
読込 追加		OK	P1

目標座標入力	· ካ		×	
点名	1			
座標X		1240.	586	0 PPm
座標Y		1234.000		
座標Z	1233.690			
				_1 _1
読	込	OK		P1

4. 杭打ち点を選択する

手順3の画面で杭打ち点を選択して【OK】を押す と、座標杭打ち画面に移ります。

5. 座標杭打ち測定を開始する

 視準線上にターゲットを設置し、【測定】を押して 測距を開始します。
 杭打ち点までの移動距離、移動の方向(矢印で表 示)が表示されます。視準点(現在ターゲットを設 置している点)の測定結果も表示されます。

・タブで表示を切り替えることができます。「グラ フィック1」は、ミラーマンの位置を基点として、 ミラーマンが杭打ち点に進む方向を示します。 「グラフィック2」は、杭打ち点を基点として、杭 打ち点とミラーマンの位置を表示します。

座標杭打ち - 唐	産標杭打ち				×
SHV XYZ	グラフィック1	グラフィッ	72		•77
▶ 右へ		0	45	'31"	0
▶右へ		0	.15	6 m	PPM
▲後へ		5	.23	82 m	
▼下へ		0	.82	2m	Ľ
余斗足巨离隹		11.829 m			
鉛直角		87*31'13"			_1
水平角		359*14'29"			7
OK		設定	ž	則定	

ミラーマンの位置 \	/ [#]	〔打ち点	ā	
座標杭打ち - 座標杭打ち				×
SHV XYZ グラフィック	1 グラフ	ィック2		•77
	\triangleright	45	'31"	0
$ \dot{\square} $		0.15	56 m	PPM
		5.23	32 m	
	Ŧ	0.82	22 m	
	斜	11.8	329 m	9.0
	ZA	87°3	1'13"	1
5	HAR	359°1	4'29"	7
OK	設定	ž	肥定	P1
座標杭打ち - 座標杭打ち	5		×	
--------------------------------	----------	-----------------	-----	
SHV XYZ グラフィッ	ク1 グラフィ:	<i>יל</i> י2	•77	
$\triangleleft \triangleright$	0	°00'00"	0	
	(0.000 m	PPm	
AV	(0.000 m		
*	(0.000 m		
余斗足巨离隹	1	1.829 m	9.0	
鉛直角	87	* 31'13"	1	
水平角	359	•14'30"		
OK	設定	測定		

座標杭打ち - 座標杭打ち				
SHV XYZ グラフィック	71 グラフ	้างว่าว	•77	
	Х	1245.817	0 0	
. 🔽 0 000	Y	1233.843	B PPm	
	Z	1234.512		
	斜	11.829 m		
00'01"'	ZA	87°31'13'	90	
_	HAR	359°14'39'		
			_ %	
OK	設定	測定		

座標杭打ち - 座標杭打ち					×
SHV XYZ グラフィック	71	グラス	71ック2		•77
	<	JD	00	'00"	0
	•		0.00	00 m	PPM
		\mathbf{V}	0.00	00 m	
		¥	0.00	00 m	
	余	4	11.	329 m	9.0
	Z	A.	87°3	1'13"	1
0.01	_ ⊦	IAR	359°1	.4'29"	7
ок		設定	Ì	則定	P1

杭打ち点までの距離が Om になる位置までターゲットを移動させて杭打ち点を探します。 ℃了移動指示:「水平角と距離から杭打ち 手順5」

6. 杭打ち測定を終了する

【OK】を押すとく座標登録>に戻ります。次の杭打 ち点を選択して、杭打ち測定を続けます。

16.4 REM測 定の杭打ち

ターゲットを直接設置できない点を求める場合に、REM 測定の杭打ちを行います。 ℃了「13.4 REM 測定」

▶手順

- 1. ターゲットを目標物の鉛直下または直上に設置 し、視準高を巻尺などで測る
- 2. 視準高と後視点設定をする

< 杭打ち>の「器械点設定」を選択して、<高さ設 定>を表示します。必要に応じて後視点の設定をし ます。 ① 「16.2 水平角と距離から杭打ち 手順2~3」

3. 杭打ち点の設定をする

<杭打ち>の「杭打ち設定」を選択して、<角度距離杭打ち-杭打ち設定>を表示します。【SHVR】を押して、距離値の入力モードを「目標 REM 高」にして、目標高(測点から杭打ち点までの高さ)を入力します。杭打ち点までの水平角は必要に応じて入力します。

A. 入力値を確定する
 入力後は手順3の画面で【OK】を押します。杭打
 ち画面に移ります。

5. ターゲットを視準する

ターゲットを視準して【測定】を押します。測定が 開始し、測定結果が表示されます。

角度距離杭	打ち - 杭打ち			×
測定 グラ	ワィック			•77
4 左へ		0°59	9'16"	0 () ••••
斜距離		16.3	302 ^m	Ľ
鉛直角		89°53	3'09"	9.0
水平角		85°32	2'19"	_1 📌
REM	shvR	設定	測定	

6. REM 杭打ち測定を開始する

ソフトキー2ページ目の【REM】を押して REM 杭 打ち測定を開始します。 視準点と杭打ち点までの距離(高さの差)と方向 (矢印で表示)が表示されます。

【停止】を押して測定を終了します。

杭打ち点までの距離(高さの差)が Om になる位置 まで望遠鏡を動かして、杭打ち点を探します。Om になったときの望遠鏡十字線の中心が杭打ち点で す。

・移動方向指示。赤色は位置が合っている状態です。

- ★ :望遠鏡を天頂方向に動かす
- ¥★ :望遠鏡の方向が合っている
- C その他の移動指示:「16.2 水平角と距離から杭 打ち」手順5

・【設定】を押すと、杭打ち精度を設定できます。 ここで設定した精度内に入った時に方向指示が両

移動方向指示 /

角度距離杭	がち - 杭打ち			×
测定	i7ィック			•77
		0°59	9'16"	
L ↓		-4.	854 ^m	
斜距離		15.	832 ^m	_L^
鉛直角		60°4	1'24"	9.0
水平角		85°3	2'19"	_1 7∕2
REM	shvR	設定	測定	

角度距離杭打	75 - 杭打ち			×
測定 グラ	ワィック			•77
];		х	1235.230	0
59'16-4.854	Y	1249.768	PPM	
	Z	1236.224		
		21	15.832m	<u>_</u>
			60%41'04"	
		ZA	004124	1
		HAR	85°32'19"	
REM	shvR	設定	測定	

B		
	0.115mileave 杭打ち精度 0.000m	
	ОК	

7. 杭打ち測定を終了する

矢印になります。

(ESC)を押すと<角度距離杭打ち - 杭打ち設定>に 戻ります。

17.オフセット測定

直接ターゲットが設置できない点や、視準できない点を測定する場合はオフセット測定をします。

- ・測定する点(求点)から少し離れたところ(オフセット点)にターゲットを設置し、測点からオフセット 点までの距離と角度を測ることにより、求点までの距離と角度を求めることができます。
- ・ 求点を求める方法にはオフセット距離・オフセット角度・オフセット2点の三つの方法があります。
- ・オフセット点の座標値を求めるときは、あらかじめ器械点設定と後視点方向角の設定が必要です。オフ セット測定メニュー内で器械点設定と後視点設定を行えます。

『♪ 器械点設定:「14.1 器械点データ入力」、後視点設定:「14.2 方向角の設定」

・オフセット測定メニューのソフトキーを作業用途や作業者の使い勝手に合わせて観測モードに割り付けることができます。

 『了「20.6 ソフトキーのユーザー割り付け」

|17.1 オフセット距離|

求点とオフセット点との水平距離を入力して求点を求めます。

- ・求点に対してオフセット点を左右方向に設置する場合は、器械点とオフセット点と求点がほぼ 90° にな るように設定してください。
- ・求点に対してオフセット点を前後方向に設置する場合は、器械点と求点とを結んだ線上にオフセット点を 設置してください。

▶ 手 順

- 求点の近くにオフセット点を設置し、求点とオフ セット点の距離を測っておく オフセット点にターゲットを設置します。
- オフセットメニューに入る
 メニューモードで「オフセット測定」を選択します。

3. オフセット点の設定をする

「オフセット距離」を選択します。オフセット方向 (オフセット点の求点との位置関係)とオフセット 距離(オフセット点と求点の距離)を設定します。

- ・オフセット点の方向
- ← 求点の左
- → 求点の右
- ↓ 求点の手前
- ↑ 求点の向こう

斜距離 鉛直角 水平角		ست 0 ال
斜距離 鉛直角 水平角	0.493m 89*29'27" 101*37'36"	
オフセット方向 ト オフセット距離	2,000 m	.1 ₽
OK HVD/xyz	測定	

- A. 入力値を確定し、求点の値を求める
 入力後は手順3の画面でオフセット点を視準して
 【測定】を押します。【停止】を押して測定を終了します。求点の値が表示されます。
 - 【HVD/xyz】を押すと、求点の測定結果の表示切り 替え(距離・鉛直角・水平角/XYZ 座標)をしま す。

求点の測定結果

	オフセット距離				×
_	斜距离推		2,4	193 m	•77
	鉛直角		89°5	3'58"	0
	水平角		352°4	6'04"	0 PPM
Ē	斜距離		0.4	93 m	
	鉛直角		89*29	9'27"	
	水平角		101*3	7'36"	
	オフセット方向	\rightarrow		-	80
	オフセット距离推		2.0	00 m	
	OK HVD,	/xyz		測定	

オフセット点の測定結果

オフセット測定を終了する
 手順5の画面で【OK】を押すと、<オフセット測定>に戻ります。

X

7

水平角

17.2 オフセット角度

求点に対して左右どちらかの、できるだけ近くにオフセット点を設置し、オフセット点までの距離と求点の 水平角を測定します。

オフセット測定

OK.

HVD/xyz

▶手順

- 求点の近く(器械点からの距離と高さがほぼ同じ 点)にオフセット点を設置する オフセット点にターゲットを設置します。
- オフセットメニューに入る
 メニューモードで「オフセット測定」を選択します。

「オフセット角度」を選択します。

17 🔛 1.器械点設定 0 ÷ 0 PPm 🔛 2.後視設定 Ŧ ÷ ÷. Ľ 9.0 莎 3.オフセット距離 📝 4.オフセット角度 **_1** 莎* 5.オフセット2点 戻る × オフセット角度 17 角度オフセット結果 6.593 m 🕕 0 斜距離 **O** PPM 92°40'24" 鉛直角 水平角 <Null> 斜距離 6.593m 9.0 92*40'27" 鉛直角 **_**1 水平角 166*17'39"

測定

3. オフセット点を測定する オフセット点を視準して【測定】を押します。 【停止】を押して測定を終了します。 4. 求点を視準する

求点の方向を視準して、【水平角】を押します。

 【HVD/xyz】を押すと、求点の測定結果の表示切り 替え(距離・鉛直角・水平角/XYZ 座標)をしま す。 求点の測定結果

	オフセット角!	ġ			×
	角度オフセ	2ット結果			•77
	斜距離			6.593 m	0
	鉛直角		92	2°40'24"	Maa
	水平角		176	5°02'14"	
Γ			6	.593 m	
	鉛直角		92	40'18"	80
	水平角		176	02'14"	ul Eza
	01/	1.05/		山田石	92
	OK	HVD/xyz	測足	水半角	

オフセット点の測定結果

オフセット測定を終了する
 手順4の画面で【OK】を押すと、<オフセット測定>に戻ります。

17.3 オフセット 2点

求点から直線上にオフセット点 A・Bを設置し、A と Bを観測して、B と求点間の距離を入力して、求点を 求めます。

・ターゲットに特別付属品の2点ターゲット(2RT500-K)を使用すると便利です。 ℂデ「24. ターゲットシステム」

2 点ターゲット(2RT500-K)の使用方法

- ・求点に2点ターゲットの先端を合わせて設置します。
- ・ターゲットを機械と正対させます。
- ・求点からターゲットBまでの距離を測っておきます。
- ・プリズム定数補正値は Omm に設定します。

▶ 手 順

 求点からの直線上に、オフセット点を2点(点 A・B)設置する オフセット点にターゲットを設置します。 オフセットメニューに入る
 メニューモードで「オフセット測定」を選択します。

「オフセット2点」を選択します。

- 3. オフセット点の設定と、測定情報の入力をする 【設定】を押してオフセット点の設定をします。 オフセット点 Bから求点までの距離を「オフセット 距離」に入力し、ターゲットを設定します。入力後 は【OK】を押します。
 - ・【登録】を押すと、ターゲットのプリズム定数補正 値を登録することができます。
- 4. ターゲット A を測定する ターゲット A を視準し、【測定】を押して測定を開 始します。【停止】を押して測定を終了します。 オフセット点 A の測定結果が表示されるので、確認 後【はい】を押します。

オフセット測定 × .77 🚺 1.器械点設定 0 ÷ 0 PPM 1 2.後視設定 Ŧ Ŧ Ŧ ____ × ┆ジ 3.オフセット距離 |ジ 4.わセット角度 ٩. .1 🌠 5.オフセット2点 7 戻る

- わセット2点 2点目測定 X 17 2点目測定 0 1 0 PPM 斜距離 5.827^m Ľ 鉛直角 92°40'15" 9.0 水平角 177°26'23" _1 **7** 設定 測定
- 5. ターゲット B を視準する ターゲット B を視準し、【測定】を押すと測定を開 始します。【停止】を押して測定を終了します。 オフセット点 B の測定結果が表示されます。

6. 測定結果を確定し求点の値を求める

【はい】を押すと求点の値が表示されます。

【HVD/xyz】を押すと、求点の測定結果の表示切り 替え(距離・鉛直角・水平角/ XYZ 座標)をしま す。

オフセット2点	結果			×
オフセット2,	点結果			• 77
余斗足巨离隹		3.9	996 ^m	0 (1)
鉛直角		89°3!	5'55"	
水平角		175°02	2'49"	9.0
				_1 ∳⊉
OK	HVD/xyz			

7. オフセット測定を終了する

【OK】を押すと<オフセット測定>に戻ります。

18.対辺測定

対辺測定では、基準となるターゲット(原点)から他のターゲット(目標点)までの斜距離、水平距離、高低差を測定します。原点を後視点として複数の目標点を連続して測定します。

- ・測定点を新たに原点として置き換え、次の目標点との間の対辺測定ができます。
- ・2点間の勾配%表示もできます。

・対辺測定メニューのソフトキーを作業用途や作業者の使い勝手に合わせて観測モードに割り付けることができます。

℃了「20.6 ソフトキーのユーザー割り付け」

18.1 複数の目標点間の連続測定

▶ 手 順

1. 対辺測定をする

メニューモードで「対辺測定」を選択します。

≯⊑a∽		×
■ 1.座標測定	😨 5.対辺測定	•77 10 0
▼ 2.杭打ち	🗼 6.後方交会	
ジ 3.オフセット測定	▶ 7.面積計算	
🔏 4.REM測定		_1 🗩
	反る	

原点を視準して【測定】を押します。【停止】を押 して測定を終了します。 目標点を視準して【対辺】を押します。【停止】を 押して測定を終了します。

原点と目標点との間の斜距離、水平距離、高低差が 表示されます。

備考

・既に測定データがある場合は、手順2の画面表示と なり、測定が開始します。

2. 連続して対辺測定をする

次の目標点を視準して【対辺】を押し、測定を開始 します。原点を後視点として複数の点を連続して測 ることができます。

・【測定】では原点を測定し直すことができます。原 点を視準して【測定】を押します。

・【原点移動】を押すと現在の点を新たに原点として 置き替え、次の目標点との間の対辺測定ができま す。

『了「18.2 原点の変更」

原点と目標点間の測定結果

	対辺測定			×
	2点間斜距離	8	3.126 m	•77
	勾配	118	.519%	0
	2点間水平距離	C).081 m	PPM
	2点間高低差	C).096 m	
Γ		g	0.164 m	
	鉛直角	78	'39'22"	8.8
	水平角	208	19'25"	
	原点移動	測定	対辺	

現在の点の測定結果

3. 対辺測定を終了する

(ESC) または【×】を押して、対辺測定を終了し ます。

18.2 原点の変更

対辺測定で目標点の測定をしたあと、その点を新たに原点として次の点との間の対辺測定をすることができます。

▶ 手 順

1. 対辺測定を行う

「 18.1 複数の目標点間の連続測定」の手順 1 まで行 います。

2. 目標点を新原点とする 目標点を測定した後、【原点移動】を押します。

対辺測定				×
2点間斜	:E离隹	8	3.126 m	•77
勾配		118	.519%	0
2点間水3	平距離	C	0.081 m	PPM
2点間高(氐差	C).096 m	
		g).164 m	
鉛直角		78	' 39'22"	8.8
水平角		208	19'25 "	 ⊑22
	原点移動	測定	対辺	Í

原点移動の確認メッセージが表示されるので、 【はい】を押します。

・【いいえ】を押すと、中止します。

対辺測定 - 原点移動	×	
原点移動しますか?		
■ 余斗足巨离隹	6.164 m	
鉛直角	78*38'45"	
水平角	208*19'20"	
		8.
		 5721
(はい	いいえ	

3. 新原点を後視点として対辺測定を続ける 「18.1 複数の目標点間の連続測定」の手順2~3と 同様に測定を行います。

19.面積計算

3点以上の点の座標を指定し、それらの点で囲まれた画地の面積(斜面積と水平面積)を座標法により求め ます。

入力

出力 座標: P1 (X1, Y1, Z1) 画地面積: S(斜面積と水平面積) P2 (X2, Y2, Z2) P3 (X3, Y3, Z3) : Х P3 P2 s Ρ4 P 1• Р5 Y 0

- ・指定する点の座標は3点以上30点までです。
- ・画地を囲む点を順に測定していく方法とあらかじめ登録してある座標データを呼び出して既知点データと して使う方法があります。
- ・面積計算メニューのソフトキーを作業用途や作業者の使い勝手に合わせて観測モードに割り付けることが できます。

€〒「20.6 ソフトキーのユーザー割り付け」

4

- ・ 画地を囲む点の測定(または読み込み)が2点以下の場合はエラーとなります。
- ・ 画地を囲む点は右回り、または、左回りで順番に(例: $P3 \rightarrow P2 \rightarrow P1 \rightarrow P5 \rightarrow P4$)測定(または読み 込み)していきます。順番に入力しないと、正しい面積が算出されません。

解 斜面積

最初に指定した3点(測定/読み込み)で斜面積の平面を形成します。4点目以降に指定した点はこの 平面に垂直に投影して、斜面積が計算されます。

▶ 手 順 測定による面積計算

1. 面積計算メニューに入る メニューモードで「面積計算」を選択します。

בבא –		×
1.座標測定	♡ 5.対辺測定	•// 0
▼ 2.杭打ち	▶ 6.後方交会	PPm
ジ 3.オフセット測定	▶ 7.面積計算	
🔏 4.REM測定		_1 📌
	戻る	

・【読込】を押すと、登録されている座標を呼び出し て使うことができます。

□ 「手順 登録してある座標データによる面積計算」

 1 点目を視準する
 【観測】を押してく観測>に移ります。画地を囲む 点の1点目を視準して、【測定】を押します。
 【停止】を押して測定を終了します。

3. 測定結果を確定する 測定結果が表示されるので、確認後【はい】を押し ます。1 点目の測定値が「01」に設定されます。

4.2 点目以降を視準する

手順2~3と同様に測定を続けます。右回り、また は、左回りで順番に(例: $P3 \rightarrow P2 \rightarrow P1 \rightarrow P5 \rightarrow$ P4)測定していきます。 5. 計算結果を表示させる

【計算】を押すと、計算結果が表示されます。

面積計算 - 座標登錄			×
Pt_01	Х	105.229	•77
Pt_02	Y	92.189	0 0
Pt_03	z	95.406	PPM
Pt_04 Pt_05			
			88
			51 1721
読込	観測	計算	
面積計算 - 面積結果			×
面積計算 - 面積結果 点数		5	
面積計算 - 面積結果 点数 斜面積	323.0	5 86m [*]	× •••••
面積計算 - 面積結果 点数 斜面積	323.0 0.032	5 86m [*] 23ha	
面積計算 - 面積結果 点数 斜面積 平面積	323.0 0.03 282.7	5 86㎡ 23ha 14㎡	
面積計算 - 面積結果 点数 斜面積 平面積	323.0 0.03 282.7 0.02	5 86㎡ 23ha 14㎡ 82ha	
面積計算 - 面積結果 点数 斜面積 平面積	323.0 0.032 282.7 0.023	5 86㎡ 23ha 14㎡ 82ha	

6. 面積計算を終了する

【OK】を押すと、<座標登録>に戻ります。(ESC) または【×】を押して、面積計算を終了します。

▶ 手 順 登録してある座標データによる面積計算

SDR8 サーベイにあらかじめ座標データが登録されている場合は、座標データを呼び出して面積計算に使う ことができます。

1. 面積計算メニューに入る

メニューモードで「面積計算」を選択します。

2. 登録済みの座標データを表示させる 【読込】を押すと、SDR8 サーベイの座標データを 呼び出します。

面積計算 -)	座標登錄			×
] x	0.000	• 77
		Y	0.000	0
		z	<null></null>	0 PPm
				<u>_</u> L^
				9.0
				_1
		-		
読込		観測	計算	

3.1 点目の座標を読み込む

画地を囲む点の1点目を登録して、【OK】を押しま す。1点目の座標が「Pt_01」に設定されます。

CF SDR8 サーベイの座標データの登録:「FX シ リーズ SDR8 サーベイプログラム解説書 5. 画 面の基本操作」

4.2 点目以降の座標を読み込む

手順2~3と同様に読込を続けます。右回り、また は、左回りで順番に(例: $P3 \rightarrow P2 \rightarrow P1 \rightarrow P5 \rightarrow$ P4)読み込んでいきます。

複数点を登録してから【OK】を押すと、同時に複数点を読み込むことができます。

計算に必要な既知点の読み込みが終了すると【計 算】が表示されます。

面積計算	座標登録			×
Pt_01	1	х	105.229	•77
Pt_02	,	Y	92.189	0 1
Pt_03	:	Z	95.406	0 PPM
Pt_04				
				9.0
				_1
				P
読込		観測	計算	
面積計算 - i	面積結果			×
面積計算 -) 点数	面積結果		5	
面積計算 - 「点数 約一時	面積結果		5	× •//
面積計算 - 点数 斜面積	面積結果	323.0	5 86m [*]	Т Т П О ррт
面積計算 - 点数 斜面積	面積結果	323.0 0.03	5 86㎡ 23ha	
面積計算 - i 点数 斜面積 平面積	面積結果	323.0 0.032	5 86m [*] 23ha	
面積計算 - 点数 斜面積 平面積	面積結果	323.0 0.03 282.7	5 86㎡ 23ha 14㎡	
<u>面積計算 -</u> 点数 斜面積 平面積	面積結果	323.0 0.03 282.7 0.02	5 86m [*] 23ha 14m [*] 82ha	
面積計算 - 点数 斜面積 平面積	面積結果	323.0 0.03 282.7 0.02	5 86㎡ 23ha 14㎡ 82ha	

計算結果を表示させる
 【計算】を押すと、結果が表示されます。

6. 面積計算を終了する

【OK】を押すと、<座標登録>に戻ります。(ESC) または【×】を押して、面積計算を終了します。 設定モードで行う各種設定項目の内容と設定方法を説明します。測定条件に合わせて、各種項目を適したものに変更することができます。

設定モードの各メニューを選択して設定します。

スターキーモードの設定アイコンをタップしても同じメニューを選択できます。

設定モードの次の項目については別の章で説明されています。

- ・通信設定 『ごう 「10. 外部機器との接続」
- ・器械定数 『ごう 「22.2 電子気泡管」「22.3 コリメーション」

20.1 観測条件

観測条件設定			×
距離表示	\$\}IEP离隹		•77
水平距離	現場距離	-	0 (1) 0
傾斜角補正	あり(H,V)	•	
倾斜角エラ−時	なし	_	
コリメーション補正	あり	•	9 .0
両差補正	なし	-	_1
ערבב⊽ע	No	•	y a
V E h*	天頂角	•	
投影補正	なし	•	
角度表示	10"	•	
距離分解能	0.1mm	•	
トラッキング最小表	長示 [10mm	-	
ppm設定	湿度なし	•	
		OK	

設定項目と各項目の選択肢	(:	*:工場出荷時の設定)
距離表示	:	斜距離*/水平距離/高低差
水平距離	:	現場距離*/平面距離
傾斜角補正 🌆	:	あり(H、V)*/なし/あり(V)
傾斜角エラー時	:	なし*/<チルト>(電気気泡菅表示)
コリメーション補正 🌆	:	なし/あり*
両差補正	:	なし*/K = 0.142 /K = 0.20
V マニュアル	:	No */Yes
V モード(鉛直角表示方法)	解説	0
	:	天頂角*/水平 0° /水平 ±90°
投影補正	:	なし*/あり

角度表示(最小角度表示): FX-203:1″*/5″ FX-205:5″/10″*
距離分解能(最小距離表示)
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…

『ご V マニュアル」の「Yes」設定:「27.1 正反視準による高度目盛のリセット」

^解 脱 水平距離

本機は斜距離を使って水平距離を算出します。 水平距離の表示方法は、以下の2通りから選択することができます。

現場距離:投影補正係数を反映していない距離

平面距離:現場距離に投影補正係数を反映した平面直角座標系上の距離 (「投影補正:なし」に設定している場合は、縮尺係数のみを反映した平面直角座標系上の 距離)

解 倾斜角補正

内蔵の2軸電子気泡管によって鉛直軸の傾きが測定され、鉛直角と水平角が自動的に補正される機能 です。

- ・自動補正された角度を読むときは、表示が安定してから読んでください。
- ・水平角の誤差(鉛直軸誤差)は、鉛直角によって変化しますので、本体が完全に水平に整準されてい ない場合は、鉛直角が変化する(望遠鏡を回す)と水平角も自動補正の働きで変化します。
- ・補正後の水平角=補正なしの水平角+水平軸方向の傾き/tan (天頂角)
- ・望遠鏡を天頂または天底付近に向けたときには、水平角の自動補正は OFF になります。

水平軸誤差と視準軸誤差による水平角の誤差が自動的に補正される機能です。通常は「あり」でご使用 ください。

解 W モード(鉛直角表示方法)

解 投影補正

本機は斜距離を使って水平距離を算出します。 高い標高で測定するときは地球の曲率の影響を受けるため、投影補正を行うことを推奨します。 球面距離は、以下の式で算出されます。

$$(HDg) = \frac{R}{(R+H)} \times HD$$

R= 地球の平均曲率半径(6,371,000m) H= 平均標高 *1 HDg= 球面距離

HD= 水平距離

*¹ 平均標高は、器械点標高と視準点標高より自動的に算出します。

解 距離分解能(最小距離表示)

「測距モード」が精密測定(連続/平均/単回)と高速測定(連続/単回)のときの距離最小表示を選 択します。

解 トラッキング最小表示

「測距モード」がトラッキング測定と路面測定(ノンプリズム測定時のみ)のときの距離最小表示を選 択します。移動体計測時など、目的に応じて設定してください。

20.2 器械設定

器械設定			×
オートパワーオフ	30分		•77
パックライト(レチクル照明点灯時) 1	-	
バックライト(通常時)	自動	-	
バックライトオフ時間	なし		
キーライト	オン	-	9.0
レチクル照明	3	-	_1 7
EDM絞り	79-	•	9
レーサー「照準オフ	5分	•	
音	あり	•	
色設定	自動	-	
タッチパネル	有効	•	
タッチハ°ネル		ОК	

● 設定項目と各項目の選択肢(*:工場出荷時の設定)

オートパワーオフ 🌆 :なし/5分/10分/15分/30分* バックライト (レチクル照明点灯時) 🔤 :0~8(1 *)(段階) バックライト(通常時) (10~8)(段階)/自動* バックライトオフ時間 🔤 : なし*/30秒/1分/5分/10分 キーライト 酈 :オフ/オン* :0~5(3*)(段階) EDM 絞り 🌆 :フリー*/固定 レーザー照準オフ 🌆 :なし/1分/5分*/10分/30分 音 :あり*/なし :1(カラー)/2(モノクロ)/自動* 色設定 タッチパネル :有効(固定)

備考

・【タッチパネル】を押すと、タッチパネル調整画面が表示されます。 *C***了**「9.1 タッチパネルの調整」

解し ボックライトの明るさ変更とレチクル照明・キーライトの ON/OFF

_ 〔☆〕を押すと、レチクル照明・キーライトの ON/OFF と連動して、バックライトの明るさが変わりま _ す。

電源を ON にしたときは、「バックライト(通常時)」で設定した明るさです。工場出荷時の設定では「バックライト(通常時)」が「バックライト(レチクル照明点灯時)」のよりも明るくなっています。 それぞれの明るさの設定は、変更することができます。

備考

 「バックライト(通常時)」を「自動」にすると、照度センサーで周囲の明るさを感知して表示部の明 るさを自動的に調整します。周囲の明るさによっては自動調整がうまくいかなかったり、多少ちらつ いて見えることがあります。

解し オートパワーオフ

設定した時間を経過すると、節電のため自動的に電源を OFF にする機能です。

解し バックライトオフ

設定した時間を経過すると、節電のため自動的にバックライトを OFF にする機能です。バックライト が「バックライト(レチクル照明点灯時)」の状態のときは、OFF にされません。

解日 キーライト

キーの照明を設定します。キーライトを「ON」にすると、「バックライト(レチクル照明点灯時)」の 状態のときに、キーが点灯します。

解 説 DEDM 絞り

本機内部の距離計の受光光量調整状態を設定します。連続測定を行うときに、状況に合わせて設定して ください。

「EDM 絞り」を「フリー」にすると、連続測定中にターゲットから戻ってくる光量の増減を距離計内の EDM 絞りが調整します。連続測距中にターゲットを移動する場合や、別のターゲットを測定する場合 は、「フリー」に設定します。

「EDM 絞り」を「固定」にすると、連続測定を終了するまで、光量調整は一定です。 連続測定中に断続的に光が遮られると「信号なし」のエラーメッセージが表示され、遮られるたびに光量 調整を行うため、測定値が表示されるまで若干時間がかかります。 受光光量が安定しているターゲットによる測定で、障害物(人、車、木の枝等)によってしばしば光が

備考

・距離測定モードが「トラッキング」(移動しているターゲットの距離測定)の場合、「EDM 絞り」の設定に かかわらず EDM 絞りを調整します。

遮られる場合は、「固定」に設定します。

設定した時間を経過すると、節電のため自動的にレーザー照準を OFF にする機能です。

20.3 EDM設定

●「EDM」タブ

● 設定項目と各項目の選択肢・入力範囲(*:工場出荷時の設定)

測距モード(距離測定モード):精密連続*/精密平均(回数は1*~9回より選択)/精密単回/高 速連続/高速単回/トラッキング/路面 🔤

ターゲット : プリズム*/シート/ノンプリズム

プリズム定数補正値 🕅 : - 99 ~ 99(「プリズム」選択時:0 *、「シート」選択時:0 *)(「距離最小表示」1mm時)

照明キー長押し([※]の機能):レーザー照準*/ガイドライト ガイドライト(明るさ) :1~3(3*)(段階)

- ・「測距モード」の「精密平均」の回数は、数字キー、【+】または【-】で設定します。
- ・「測距モード」の「路面」は、<ターゲット>で「ノンプリズム」を選択した場合のみ表示されます。 『『「「手 順 ターゲットの登録・編集」
- ・ターゲットの情報を登録・編集することができます。
- ℃了「手 順 ターゲットの登録・編集」
- ・「ターゲット」で「ノンプリズム」を選択すると、「プリズム定数補正値」は表示されません。
- ・「プリズム定数補正値」は、「距離最小表示」の設定が 0.1mm のとき小数第一位まで入力できます。 『ア 「距離最小表示」の設定:「20.1 観測条件」
- ・「プリズム定数補正値」を変更して【OK】を押すと、ステータスバーやスターキーモードのターゲット タイプに、変更したプリズム情報が一時的に追加表示されます。データコレクターから本機にターゲット ト情報を設定したときも、ステータスバーやスターキーモードのターゲットタイプに変更したプリズム 情報が一時的に追加表示されます。いずれも<ターゲット登録>には登録されません。
- Cアステータスバー:「5.2 表示部とその操作」、スターキーモード:「5.4 スターキーモード」、くター ゲット登録>:「手順 ターゲットの登録・編集」、イニシャライズ処理:「ソフトウェア上の障害 が発生したら M イニシャライズ処理」
- ・ガイドライトの明るさ(ガイドライト)は、「照明キー長押し」が「ガイドライト」に設定されている
 ときにのみ表示され、設定できます。

「路面」は、路面などの部分を斜めに測定し概略の測定値を得るための専用の測距モードで、「ターゲット」を「ノンプリズム」に選択した場合のみ選択できます。「路面」に設定していても、ターゲットを 「ノンプリズム」以外に設定すると自動的に「測距モード」は「トラッキング」に変更されます。

反射プリズムには、それぞれプリズム定数があります。使用する反射プリズムのプリズム定数補正値を 設定してください。プリズム定数の符号(+ / -)を反転したものがプリズム定数補正値になります。 (プリズム定数 40mm の場合は、補正値 -40mm を入力してください。) 「ターゲット」で「ノンプリズム」を選択するとプリズム定数補正値が自動的に「0」に設定されます。

また、ターゲットごとに定数を設定することができます。「ターゲット」を切り替えると、登録してあ るプリズム定数補正値になります。

●「ppm」タブ

EDM設定				×
EDM ppm				•77
気温			35.2 °C	
気圧		9	25.2 hPa	
湿度			50.0 %	
ppm			42.2	9.0
				_1 ∳∕2
Opp	m		OK	

- ・【Oppm】を押すと気象補正係数が0になり、気温、気圧は工場出荷時の値が設定されます。
- ・気象補正係数は、気温と気圧を入力することで計算されて設定されますが、気象補正係数を直接入力することもできます。
- ・基本モードとプログラムモードで気温・気圧・湿度・ppm の設定が異なる場合は、プログラムモードの設定が優先されます。

● 設定項目と各項目の選択肢・入力範囲(*:工場出荷時の設定)

気温	:	- 30 ~ 60(15 *)(℃)(距離最小表示 1mm 時)
気圧	:	500~1400 (1013 *) (hPa)、375~1050 (760 *) (mmHg)
		(距離最小表示 1mm 時)
湿度	:	0 ~ 100(50 *)(%)(距離最小表示 1mm 時)
ppm (気	〔象補正係数) 🌆 🛛 🗄	- 499 ~ 499(0 *)(距離最小表示 1mm 時)

・「湿度」は、観測条件設定の「ppm 設定」が「湿度あり」に設定されている場合に表示されます。

・「距離最小表示」が 0.1mm のとき、設定項目は小数第一位まで入力できます。

^解① 気象補正係数

気象補正係数は、空気中の光の速度が気温や気圧によって変わることを考慮して距離測定する場合に設 定します。

- ・本機は気圧 1013.25hPa、気温 15 ℃および湿度 50% の気象条件で補正係数が 0ppm となるよう設計されています。
- ・本機では、気温、気圧および湿度を入力することにより気象補正係数が計算され、設定されます。気 象補正係数は次の式で算出されています。

気象補正係数 (ppm) = $282.324 - \frac{0.294280 \times p}{1 + 0.003661 \times t} + \frac{0.04126 \times e}{1 + 0.003661 \times t}$

- t:温度(°C) p:気圧(hPa) e:水蒸気圧(hPa) h:相対湿度(%)
- E:飽和水蒸気圧
- ・e(水蒸気圧)は、次の式で算出することもできます。

$$e = h \times \frac{E}{100}$$

$$\mathsf{E} = 6.11 \times 10^{\frac{(7.5 \times t)}{(t + 237.3)}}$$

- ・本機は光を利用して距離を測定していますが、光が進む速度は大気の光波屈折率によって変化します。この大気の光波屈折率は気温および気圧によって変化し、常温大気圧付近では、気圧不変ならば、気温1℃の変化で約1ppm、気温不変ならば、気圧 3.6hPa の変化で約1ppm 変化します。 そこで、光の速度の変化を考慮にいれ、より高精度な測定を行うには、より正確な気温および気圧から気象補正係数を求め、補正を行う必要があります。そのため、気温および気圧は精度の高い計器で 測定することをおすすめします。
- ・「気温」、「気圧」および「湿度」には、測定光路のそれぞれの平均を入力します。 平坦地:中間地点の気温、気圧および湿度を採用します。丘陵地、山岳地:中間点(C)の気温、気 圧および湿度を採用します。中間点の気温、気圧および湿度を測ることができない場合には、器械点 (A)と反射プリズム設置点(B)の気温、気圧および湿度からそれぞれの平均を求めて採用します。

・気象補正を行わない場合は、Oppm に設定します。

▶ 手 順 ターゲットの登録・編集

< EDM 設定>の「EDM」タブで「ターゲット」または「プリズム定数補正値」を選択しているときは 【登録】が表示され、ターゲットの情報を登録・編集することができます。

EDM設定				×
EDM pp	m			•77
测距モード		精密連續	続 🔻	0 (1) 0
ターケット		ጋ°ሣス°ፊ		
プリズム定数補正値			0 mm	
照明キー長押		レーサドー販	[準 ▼	9.0
ガイドライト		3	•	_1 ⋤2
	登録		OK	

1. 登録画面を表示させる

【登録】を押します。登録されているターゲットの 一覧が表示されます。

- ・【追加】: このソフトキーを押して表示される一覧 画面から追加したいターゲットを選択して【OK】 を押すと、ターゲットの一覧に追加表示されます。 ターゲットは6種類まで登録できます。
- ・【削除】:選択しているターゲットを削除します。

2. ターゲットの情報を編集する

編集したいターゲットを選択して【編集】を押す と、<ターゲット編集>が表示されます。各項目の 選択と入力をします。

ターゲット:プリズム/シート/ノンプリズム プリズム定数補正値:-99~99 (mm) (距離最小表示 1mm 時)

・「ターゲット」を「ノンプリズム」に選択した場 合、プリズム定数補正値は「0」になります。

 ターゲットの編集を終了する
 手順2の画面で【OK】を押すと、編集した内容を 保存して手順1の画面に戻ります。【OK】を押す と、< EDM 設定>に戻ります。

|20.4 タブの追加と変更

観測モードとメニューモードのタブを、測定条件や作業者の使い勝手に合わせて設定できます。

- ・設定したタブは、電源を OFF にしても次に変更するまで保存されます。
- ・設定を元に戻すには、「タブの追加と変更 手順1」の<画面選択>で【クリア】を選択します。画面、ソ フトキーおよびステータスバーの設定も元に戻ります。
- ・タブは、5タブになるまで追加できます。

4

・タブを追加・変更すると、それ以前に記憶されていたタブの設定は消去されます。

● 工場出荷時のタブ設定と追加・変更ができるタブ

タブの設定変更ができるのは、以下の画面です。 ・観測モード<観測>

工場出荷時の設定	追加・変更ができるタブ
SHV	SHV
距離	距離
グラフィック	座標

[・]メニューモード<角度距離杭打ち-杭打ち>

工場出荷時の設定	追加・変更ができるタブ		
観測	観測		
グラフィック			

・メニューモード<座標杭打ち-座標杭打ち>

工場出荷時の設定	追加・変更ができるタブ
SHV	SHV
XYZ	XYZ
グラフィック 1	
グラフィック 2	

・グラフィックタブは削除することはできません。

▶ 手 順 タブの追加と変更

タブの設定メニューに入る
 <設定>で「カスタマイズ」を選択します。

変更したい画面を選択して、「タブページ」を選択 します。

2. 追加・変更するタブを選択する くカスタマイズ タブページ>で【追加】・【削除】な どの各ソフトキーを押します。

- ・【追加】を押すと、選択したタブがタブの最後に追 加されます。
- ・ソフトキー2ページ目の【挿入】を押すと、現在のタブの前に、選択したタブが挿入されます。
- ・ソフトキー2ページ目の【設定】を押すと、現在のタブが選択したタブに変更されます。
- ・【削除】を押すと、現在のタブが削除されます。

#

・タブを削除すると元に戻せません。

「種類」から割り付けしたいタブを選択します。

- 3. 次に設定するタブを選択する 手順2を繰り返して、設定作業をします。
- 4. タブの設定を終了する すべてのタブの設定が終わったら、【OK】を押しま す。設定が記憶され、<メニュー>に戻ります。 設定した画面では、新しいタブの表示になります。

20.5 画面の表示項目変更

画面の表示項目を、測定条件や作業者の使い勝手に合わせて設定できます。

- ・設定した表示項目は、電源を OFF にしても次に変更するまで保存されます。
- ・設定を元に戻すには、「表示項目の変更 手順1」の<画面選択>で【クリア】を選択します。タブ、ソフ トキーおよびステータスバーのユーザ割り付けの設定も元に戻ります。
- ・「グラフィック」タブの表示項目は設定できません。

¥

・表示項目を変更、登録すると、それ以前に記憶されていた設定は消去されます。

▶ 手 順 表示項目の変更

1. 表示項目の設定メニューに入る <設定>で「カスタマイズ」を選択します。

画面選択		×	
凰 1.観測			
❷ 2.角度距離杭打ち			
🕑 3.座標杭打ち			
2JJ7	戻る		

変更したい画面を選択して、「コントロール」を選 択します。

≠ _ a∽		×
▼ 1.観測		•77
		0 1
■ 1.タブページ		0 PPM
2.ביאר-א		<u></u>
		9.0
B 3.721+≠− S		_1
	戻る	

2. 表示させる項目を追加する

【追加】を押すと、項目が追加表示されます。 ・【削除】を押すと、選択している項目が削除されま す。

4

・項目を削除すると元に戻せません。

3. 表示させる内容を選択する 項目の選択肢から、表示させる内容を選択します。

<u>ክ</u> አያマイス* ጋ	ハロール/観測				×
測定距離	¥				(77)
斜距離					0
水平距離					0
高低差					PPM
鉛直角					
水平角					1 *
鉛直角(リアル	/sイム)				
水平角(リアル	<i>ゆ</i> イム)				9.0
座標X					1
測定距離			-		1
<u> </u>					9
追加	設定	削除	O	K	

4. 文字の大きさなどを設定する 【設定】を押して、文字の大きさ、属性、色および 文字間を選択します。

X	
百遇	0 1
細字 💌	0 PPm
黒	
通常	
	_1
OK	
	普通 細字 果 通常 ▼

5. 次の表示項目の変更をする

手順2~4と同様に、変更作業を繰り返します。

6. 表示項目の変更を終了する

すべての表示項目の変更が終わったら、【OK】を 押します。変更が記憶され、<メニュー>に戻り ます。変更をした画面では、変更後の表示になり ます。

20.6 ソフトキーのユーザー割り付け

ソフトキー割り付けを、測定条件に合わせて設定できます。作業用途や作業者の使い勝手に合わせて独自の ソフトキー割り付けが行えますので、効率的に作業を進めることが可能です。

- ・設定したソフトキー割り付けは、電源を OFF にしても次に変更するまで保存されます。
- ・割り付けを元に戻すには、「ソフトキーの割り付け 手順1」の<画面選択>で【クリア】を選択します。 タブ、画面およびステータスバーやスターキーモードの設定も元に戻ります。

4

- ・ソフトキー割り付けを変更・登録すると、それ以前に記憶されていたキーの割り付けは消去されます。
- ・「グラフィック」タブへのソフトキーの割り付けはできません。

● 割り付けが変更できる画面と、工場出荷時の割り付け

①観測モード<観測>「SHV」タブ、「距離」タブ
 1ページ目:【EDM】【チルト】【Oセット】【測定】
 2ページ目:【メニュー】【オフセット】【任意角】【座標】
 3ページ目:【対辺】【後方交会】【REM】【杭打】

②メニューモード<角度距離杭打ち-杭打ち>「観測」タブ

- 1ページ目:【REM】 【SHVR】 【設定】 【測定】
- 2ページ目: 【---】 【---】 【---】
- 3ページ目:【---】【---】【---】【---】

③メニューモード<座標杭打ち-座標杭打ち>「SHV」タブ、「XYZ」タブ

- 1ページ目:【OK】【---】【設定】【測定】
- 2ページ目:【---】【---】【---】
- 3ページ目:【---】【---】【---】

● 割り付けることができるソフトキーとその機能

[]	:機能を設定しない
【測定】	:距離と角度を測定
【設定】	:杭打ち精度を設定する(②、③のみ割付可能)
(SHV)	:「距離」タブに表示が切り替わり、S(斜距離)、H(水平距離)、V(高低差)が表 示(①のみ割付可能) 「距離」タブがない場合は、タブを作成
[SHVR]	:杭打ち画面の距離モードの切り替え(大文字になっているのが、選択されている方 法。S:斜距離、H:水平距離、V:高低差、R:REM 高)(②のみ割り付け可能)
[OK]	: 選択した杭打ち点の杭打ち測定を終了して<座標登録>に戻る。測定を終了した杭 打ち点はリストから削除(③のみ割り付け可能)
【0セット】	:水平角を0°に設定
【任意角】	:水平角任意設定
[R / L]	:水平角右回り/左回りの選択(大文字になっているのが、選択されている表示方法)
【ZA / %】	:鉛直角/勾配(%)表示切り替え(大文字になっているのが、選択されている表示 方法)
【ホールド】	:水平角ホールド/ホールド解除
【呼出】	:最終の測定データを表示する
【HV アウト S】	:測角データを外部機器に出力する(SET フォーマット)
【HVD アウト S】	:測距・測角データを外部機器に出力する(SET フォーマット)
【XYZ アウト S】	:座標データを外部機器に出力する(SET フォーマット)
【HV アウト T】	:測角データを外部機器に出力する(GTS フォーマット)(①のみ割付可能)
【HVD アウト T】	:測距・測角データを外部機器に出力する(GTS フォーマット)(①のみ割付可能)
【XYZ アウト T】	:座標データを外部機器に出力する(GTS フォーマット)(①のみ割付可能)
【高さ】	:器械点、座標、器械高、視準高を設定
【光量】	:光量表示

【チルト】	:電子気泡管表示				
(EDM)	:EDM 設定				
【メニュー】	:メニューモードへ(座標測定、	杭打測定、	オフセット測定、	REM 測定、	対辺測定、
	後方交会、面積測定)				
【座標】	:座標測定				
【杭打】	:杭打ち測定				
【オフセット】	:オフセット測定				
【オフセット角度】	:オフセット角度測定				
【オフセット距離】	:オフセット距離測定				
【オフセット2点】	:オフセット2点測定				
【対辺】	:対辺測定				
[REM]	:REM 測定				
【後方交会】	:後方交会				
【面積】	:面積計算				

▶ 手順 ソフトキーの割り付け

1. ソフトキー設定メニューに入る <設定>で「カスタマイズ」を選択します。

画面選択	×		
凰 1.観測			
❷ 2.角度距離杭打ち			
❷ 3.座標杭打ち			
単 4.スターキーモード			
クリア	戻る		

変更したい画面を選択して、「ソフトキー」を選択 します。

4 <u>-</u> 1-	×
▼ 1.崔見測	•77
	0
	0 PPm
留 2 コントロール	_L°
	9.0
Image: 10 × 17 × 10 × 10 × 10 × 10 × 10 × 10 ×	_1
- 戻る	

2. 変更したいタブを選択する

変更したいタブを選択します。現在、各ページに割り付けられているソフトキーが表示されます。

カスタマイズ ソフトキー/観測 🛛 🗙								
SHV 距離 グラフィック								
EDM	 チルト	0セット	測定	P1				
×=1-	オフセット	任意角	座標	P2				
対辺	後方交会	REM	杭打	P3				
スペ━ス: 一覧表示								
			ОК					

3. 割り付けを変更するキーを選択する

割り付けを変更するソフトキーを選択します。ソフ トキーをタップすると、割り付けの選択肢が一覧表 示されます。ソフトキーにカーソルがある状態で は、全角モードを OFF にして〔S.P.〕を選択する と、割り付けの選択肢が一覧表示されます。

Ŋ	カスタマイス* ソフトキー/観測						
Π	ソフトキー一覧						
	呼出	HV7לאS	HVD7לאל	XYZアウトS			
	ΗVアウトΤ	HVDアウトT	XYZアウトT	高さ			
	光量	チルト	EDM	Ӿ⊏ュー			
	座標	杭打	オフセット	わセット角度			
	オフセット距離	オフセット2点	対辺	REM			
	後方交会	面積					
				ОК			

4. 割り付けを変更する

<ソフトキー一覧>から、割り付けをしたいソフト キーを選択します。 指定したソフトキーが、指定した位置に割り付けら れます。

5. 次に割り付けるキーを選択する

手順2~4と同様に、割り付け作業を繰り返しま す。

6. キー割り付けを終了する

すべてのソフトキーの割り付けが終わったら、【OK】 を押します。割り付けが記憶され、<メニュー>に 戻ります。割り付けをした画面では、新しい割り付 けで機能が表示されます。

20.7 スターキーモードのユーザー割り付け

スターキーモードのアイコン配列を、測定条件や作業者の使い勝手に合わせて設定できます。

- ・設定した表示項目は、電源を OFF にしても次に変更するまで保存されます。
- ・設定を元に戻すには、「表示項目の変更 手順1」の、<画面選択>で【クリア】を選択します。タブ、 画面およびソフトキーの設定も元に戻ります。

4

・表示項目を変更、登録すると、それ以前に記憶されていた設定は消去されます。

・スターキーモードの配列を変更すると、ステータスバーのアイコンも連動して変更されます。

●表示項目

- ・バッテリー残量
- ・ターゲットタイプ
- ・ガイドライト/レーザー照準
- ·傾斜角自動補正
- ·通信状態
- ・入力モード
- ・文字入力パネル
- ・タッチパネル
- ·ppm(気象補正係数)
- ・ディスク容量
- ・表示なし

▶ 手順 表示項目の変更

1. 表示項目の設定メニューに入る <設定>で「カスタマイズ」を選択して、「スター キーモード」を選択します。

0

ppm

カスタマイズ゛スターキーモート゛

2. 割り付けを変更するアイコンを選択する 割り付けを変更するアイコンを選択します。アイコ ンをタップすると、割り付けの選択肢が一覧表示さ れます。

- 3. 割り付けを変更する <スターキー一覧>から、割り付けをしたいアイコ ンを選択します。 指定したアイコンが、指定した位置に割り付けられ ます。
- ×× カスコスターキー一覧 0 ppm
- 4. 次に割り付けるアイコンを選択する 手順2~3と同様に、割り付け作業を繰り返しま す。
- 5. アイコンの割り付けを終了する

すべてのアイコンの割り付けが終わったら、(ENT) を押します。割り付けが記憶され、く画面選択>に 戻ります。スターキーモードに入ると新しい割り付 けで表示されます。

20.8 単位

● 設定項目と選択肢(*:工場出荷時の設定)

気圧単位 : hPa * ∕ mmHg

20.9 パスワード

パスワードを設定することで大切な測定データなどを守ることができます。

工場出荷時は、パスワードは設定されていません。初めてパスワードを設定するときは、「古いパスワード」 には入力する必要がありません。

パスワードを設定すると電源 ON 時にパスワード入力画面が表示されます。パスワードを入力してください。

ハ*スワード設定	×			
古しい、スワート、	•77			
新ししい。スワート				
新しいパスワードの確認入力				
	_1			
OK				

設定項目

古いパスワード : 設定されているパスワードを入力 新しいパスワード : 新しく設定するパスワードを入力 新しいパスワードの確認入力 : もう一度新しく設定するパスワードを入力

・3~16桁まで入力できます。入力した値は「***・・・」と表示されます。 ・パスワードを解除したいときは、新しいパスワードには何も入力しないでください。

4

・パスワードの設定はイニシャライズ処理をしても解除されません。

20.10日付・時間

● 設定項目

日付 :「▼」を押してカレンダーを表示させて日付を選択します。または、直接数値を入 力します。

時間 :「▲」「▼」を押して設定します。(S.P.)を押すと数値が1増加します。

解日付と時間

「本機にはカレンダー・クロック機能があります。

|20.11設定のデフォルト復帰

設定内容を工場出荷時の設定に戻すには、イニシャライズ処理を行います。イニシャライズ処理をしてもプ ログラム モードの現場データは保持されますが、できるだけイニシャライズ前にデータをコンピューター に転送してください。

イニシャライズ処理の手順は、〔※〕、(S.P.)を同時に押しながら、〔①]を押します。 画面に "All Settings will be cleared. Are you sure ? "と、メッセージが表示されます。 イニシャライズを行うときは Yes を選択して(ENT)を押します。

イニシャライズ処理を行った後、電源を ON にすると、タッチパネルの調整画面が表示されます。タッチパネルの調整をしてください。 CF「9.1 タッチパネルの調整」

4

・パスワードの設定は、イニシャライズ処理をしても解除されません。

イニシャライズを取りやめるときは No を選択して(ENT)を押すか、または(ESC)を押します。

4

・このとき、レジューム機能は解除されます。

21.警告・エラーメッセージ

本機で表示される警告・エラーメッセージと、その原因を示します。同じ表示が繰り返し表示される場合や 下記以外の表示がで出た場合は、本機の故障が考えられます。最寄りの営業窓口へご連絡ください。

オーバーレンジ

勾配%表示の際、表示範囲(±1000%未満)を越えた。 REM 測定で鉛直角が水平 ±89[°]を越えたか、または、測った距離が 9999.999m を越えた。 目標点から離れた点に器械点を設置してください。

温度範囲外

使用温度範囲外。 適切な使用温度範囲内で使用してください。

計算エラー!!

後方交会で同一既知点を複数回登録した。 既知点座標が重複しないように他の既知点を設定してください。

面積計算で計算条件が満たされないため計算できなかった。 計算条件を確認の上、再度測定を行ってください。

原点を測定してください。

対辺測定で原点の測定が正常に終了していない。 原点を正確に視準して、再測定してください。

座標が存在しません。

座標データの読み込みを行ったときに該当項目がない。

座標が登録されていません。

座標杭打ちで、座標が登録されていない。 座標の登録をしてください。

視準エラー

プリズムの測定条件が悪い。 もう一度プリズムの設置状態を確認し、再測定してください。

受光エラー

ノンプリズム設定時で距離測定の条件が悪い。ノンプリズム設定時で測距光が同時に2つ以上の面に当 たっているため測距できない。 同一面に測距光が当たるような部分を、ターゲット面として選択してください。

信号なし

距離測定を開始したとき、反射光が検出されない。または測定中に反射光が弱くなったか遮断された。 ターゲットを視準し直すか、反射プリズムの場合は反射プリズムの数を増やしてください。

精度不良

後方交会で器械点座標の計算が収束しない。 結果を判断し、必要ならば再度測定を行ってください。

タイムアウト ‼

距離測定時に、一定時間内に測距できなかった。 もう一度プリズムの設置状態を確認し、再測定してください。

チルトオーバー

測定中、本機の傾きが傾斜角補正の範囲を越えた。 整準し直してください。

時計エラー!!

リチウム電池の電圧が低下したり、なくなったりして、年月日時間の表示が正しくなくなった。再度日 付・時間の設定を行ってください。 『ア「20.10日付・時間』 電源 ON のたびにメッセージが表示されるときは、リチウム電池の交換が必要です。電池の交換につい ては最寄りの営業窓口までご連絡ください。

パスワードが一致しません。

新しいパスワードとその確認入力のパスワードが異なる。 同じパスワードを入力してください。

パスワードが違います。

設定されたパスワードと異なっている。

パスワードは3文字以上で設定してください。 パスワードが3文字未満だったため、設定されなかった。 3文字以上のパスワードを入力してください。

プリズムを観測してください。

REM 測定でターゲットの測定が正常に終了していない。 ターゲットを正確に視準して、再測定してください。

古いパスワードが正しくありません。

設定されたパスワードと異なっている。 設定したパスワードを確認の上、再度パスワードを入力してください。

Error: Read Build Info.

Error: Read sysflg

Error: Self check

Error: Read OS Parameter

Error: Write sysflg

【OK】を押して、メッセージを解除してください。メッセージが頻繁に表示される場合は、最寄りの営業窓口にご連絡ください。

X または Y が NULL の座標データは読み込みできません !!

座標データの読み込みを行ったとき、X または Y が NULL の座標データは読み込みができません。X と Y の両方にデータが入っている座標データを読み込んでください。
22.点検・調整

本機は、微妙な調整を必要とする精密機器です。常に正確な測定を行うには、定期的な点検・調整が必要で す。

- ・ 点検・調整は、必ず「22.1 円形気泡管」から「22.7 レーザー求心(特別付属品)」の順番で行ってください。
- ・長期の保管後や運搬後、使用中に強いショックなどを受けたと思われる場合は、特に注意して必ず点検・ 調整を行ってください。
- ・点検と調整は、機械の設置が安定している環境で行ってください。

22.1 円形気泡管

整準作業で円形気泡管の気泡にずれが生じる場合は以下の手順で調整を行ってください。

4

・調整ねじは締め付けすぎないよう、締め付け力がどのねじも同量になるようご注意ください。

▶ 手 順 点検と調整

1. 画面表示を見ながら整準する 『ア「8.2 整準作業」

備考

・ステータスバーやスターキーモードの シーをタップするか、スターキーモードの傾斜角自動補正アイコンをタップすると、電子気泡管を表示させることができます。

4

・電子気泡管がずれていると円形気泡管を正しく調整できません。
 €了「22.2 電子気泡管」

2. 円形気泡管の気泡の位置を確認する ① デ「整準作業 手順 1 ~ 2」

気泡が中央からずれていなければ調整は不要です。 気泡が中央からずれている場合は、次の調整を行っ てください。

- 調整ねじをゆるめて気泡を中央に入れる まず、ずれ方向を確認します。
 調整ピンを使い、気泡のずれた方向と反対側にある 円形気泡管調整ねじをゆるめて気泡を中央に入れま す。
- 4. 調整ねじを締める

3 つの調整ねじの締め付け力が同量になるようにね じを締め、気泡を円の中央に合わせます。

22.2 電子気泡管

何らかの理由により、電子気泡管の傾斜角0°を示す位置(電子気泡管の0点)がずれた場合は、本機が正しく整準されても傾斜角が0°とならず、角度測定の精度に影響をおよぼします。 電子気泡管の0点のずれは、以下の手順で消去することができます。

▶ 手 順 点検・調整

- 1. 気泡管の点検・調整を行うか、または注意深く本 機を整準する
- **2. 機械定数メニューに入る** 設定モードで「器械定数」を選択します。

3. チルトオフセットメニューに入る 「チルトオフセット」を選択します。

4. チルト X / Y 傾斜角が ±1' 以内に入るように整 準後、表示が安定するまで数秒待ち、現在の X 方 向(視準方向)の傾斜角、Y 方向(横軸方向)の 傾斜角を読み取る

羀 1.観測条件	⊿ 6.単位		
말 2.器械	🖶 7.カスダ	マイズ	
C 3.器械定数	S 8.N°77	! - ի°	
≎ 4.EDM	❷ 9.日付	時刻	9.0
♥ 5.通信			_ ∳21
		戻る	
器械定 数設定			×
❷ 1.チルトオフセット			
ピ 2.コリメーション			 @.0 1
		戻る	Ĺ
チルトオフセット - 測定			×
正データセット			•77
チルトX		-1'10"	0 (1) 0
チルトY		1'12"	
鉛直角 水平角	287 89	'25'39" '01'36"	_L° ®↓0 _1 ₽
		OK	

設定

- 5. 本機を180°回転させる 【OK】を押します。現在の位置から本機を180°回 転させます。
- 6. 表示が安定するまで数秒待ち、傾斜角 X2・Y2 を読みとる

7. そのままの状態で以下のオフセット値(電子気泡管の0点のずれ量)を計算する
Xoffset = (X1 + X2) / 2
Yoffset = (Y1 + Y2) / 2
オフセット値(Xoffset・Yoffset)のどちらか一方でも±10"を越えている場合は、以下の手順で調整してください。
範囲内の場合は、調整は不要です。(ESC)を押してく器械定数>に戻ります。

8. 本機を180°回転させる 【OK】を押します。本機を180°回転させます。

9. 調整範囲内であるか確認する 測定結果による傾斜補正量が両方とも現在値±1' 以内ならば、【はい】を押して、傾斜補正量を更新 します。<チルトオフセット>に戻ります。手順 11 に進みます。 範囲を越えている場合は、【いいえ】を押して調整 を中止し、最寄りの営業窓口にご連絡ください。画 面は<器械定数>に戻ります。

チルトオフセット - 測定		×
反データセット		•77
チルトX	0'19"	
チルトY	-0'13"	
		Ľ
鉛直角	265*44'42"	9.0
水平角	269*01'40"	_1 ⊠
	ОК	

求	点の測定結果		
	チルトオフセット - 結果		×
	現在値		•77
	チルトX	0°08'30"	0
L	チルトY	0°08′50″	PPM
Γ	新値		
	チルトX	0°08'30"	
L	チルトY	0°09'40"	9
			_1
	はい	いいえ	

オフセット点の測定結果

▶ 手 順 再点検

- **10.チルトオフセットメニューに入る** 「チルトオフセット」を選択します。
- 11.表示が安定するまで数秒待ち、傾斜角 X3・Y3 を読みとる
- **12.本機を180[°]回転させる** 【OK】を押します。本機を180[°]回転させます。
- 13.表示が安定するまで数秒待ち、傾斜角 X4・Y4 を読みとる

14.そのままの状態で以下のオフセット値を計算する Xoffset = (X3 + X4) / 2 Yoffset = (Y3 + Y4) / 2

オフセット値が両方とも ±10" 以内であれば調整は 終了です。〔ESC〕を押して、<器械定数>に戻り ます。

オフセット値がどちらか一方でも ±10" を越えてい る場合は、もう一度最初から点検・調整を行いま す。 調整を繰り返しても計算値が ±10" 以内にならない 場合は、最寄りの営業窓口にご連絡ください。

22.3 コリメーション

コリメーションのオフセット量を、測定することができます。オフセット量の測定により、正・反いずれかの測定でのずれ量を補正することができます。オフセット量の補正は、以下の手順で行います。

4

・ 調整は、日差しが弱く、ゆらぎのない環境で行ってください。

▶ 手 順 調整

- 1. 本機を注意深く整準する
- 2. 本機から約 100m 離れてほぼ水平方向にター ゲットを据え付ける
- 機械定数メニューに入る 設定モードで「器械定数」を選択します。

4. コリメーションメニューに入る 「コリメーション」を選択します。

5. 望遠鏡「正」でターゲットの中心を視準する ターゲットを視準して【OK】を押します。

設定		×
1.観測条件	⊿ 6.単位	
● 2.器械	🖶 ७.७८९२४४	O maa
C 3.器械定数	% 8.パスワード	
≎ 4.EDM	❷ 9.日付時刻	9.0
🗣 5.通信		_] 72
	展る	

ыĸ	定教設	定						×
말	1. J N	トオフセット	ŀ					
<u> </u>	2.コリン	<u> メーション</u>						
-							7	
					戻	3	Ĺ	
71/1 x-	- ション -	測定			民	3		×

		X
鉛直角	87*01'50"	9.0
水平角	133*00'30"	_1
		_ yz

望遠鏡を「反」にし、ターゲットの中心を視準する
 本機を180°回転させ、ターゲットを視準して、
 【OK】を押します。鉛直角に角度が表示されます。

【はい】を押してオフセット量を補正します。【いい

え】を押すと、測定したオフセット値は破棄されま

22.4 望遠鏡十字線

7. オフセット量を補正する

す。

望遠鏡十字線に、傾きやずれがないか点検します。

4

・望遠鏡十字線の点検では、ターゲットの視準は目視で行ってください。

▶ 手 順 点検 1 望遠鏡十字線の傾き

- 1. 本機を注意深く整準する
- 2. 明瞭に見える目標点(例えば屋根の先端)を十字 線の A 点に合わせる

3. 望遠鏡微動つまみで静かに望遠鏡を動かして、目 標点を縦線上の B 点へ移動させる このとき目標点が縦線に沿って平行移動すれば調整 は不要です。 縦線からずれて移動した場合は、最寄りの営業窓口 にご連絡ください。

В

▶ 手順 点検2 望遠鏡十字線の位置

4

- ・ 点検は、日差しが弱く、ゆらぎのない環境で行ってください。
- ・ 点検は<観測条件設定>の「傾斜角補正」の設定を「あり(H、V)」に、「コリメーション補正」の設定 を「あり」にして行ってください。

 「了「20.1 観測条件」
- 1. 注意深く本機を整準する
- 本機から約 100m 離れてほぼ水平方向にター ゲットを据え付ける

- 観測モードで、望遠鏡「正」でターゲットの中心 を視準して水平角 A1 と鉛直角 B1 を読み取る 例: 水平角 A1 = 18°34′00″ 鉛直角 B1 = 90°30′20″
- 4. 望遠鏡を「反」にし、ターゲットの中心を視準して水平角 A2 と鉛直角 B2 を読み取る例:
 水平角 A2 = 198°34′20″
 鉛直角 B2 = 269°30′00″
- 5. A2 A1 と B2 + B1 を計算する A2 - A1 が 180°±20″以内 B2 + B1 が 360° ±20″以内にあれば、調整は不要です。 例: A2 - A1 (水平角) = 198°34′20″ - 18°34′00″ = 180°00′20″ B2 + B1 (鉛直角) = 269°30′00″ + 90°30′20″ = 360°00′20″ 2~3回点検を繰り返しても誤差が大きい場合は、 「22.2 電子気泡管」と「22.3 コリメーション」の点 検・調整が済んでいるかご確認ください。 それでも結果が変わらない場合は、最寄りの営業窓 口にご連絡ください。

22.5 求心望遠鏡

4

・調整ねじは締め付けすぎないよう、どのねじも締め付け力が同量になるようご注意ください。

▶ 手 順 点検

- 1. 本機を注意深く整準し、求心望遠鏡で正確に測点 を求心する
- 2. 本機上部を180°回転させ、求心望遠鏡の二重丸 と測点の位置を確認する 測点が二重丸の中央からずれていなければ調整は不 要です。 測点が二重丸の中央からずれている場合は、次の調 整を行ってください。

▶ 手 順 調整

3. ずれ量の半分を整準ねじで修正する

4. 求心望遠鏡焦点鏡カバーをはずす

 残りのずれ量を求心望遠鏡についている4本の調整ねじで修正する 測点が図の下半分(上半分)にある場合は、 上(下)の調整ねじを少しゆるめ、
 下(上)の調整ねじを同量だけ締めて 求心望遠鏡の中心の真下に測点が来るようにします。
 (図の線上に来るようにします。)

測点が、図の実線(点線)上にある場合は、 右(左)の調整ねじを少しゆるめ、 左(右)の調整ねじを同量だけ締めて 求心望遠鏡の中心に測点が来るようにします。

0

- 6. 本機上部を回転しても、測点が求心望遠鏡の二重 丸の中央からずれていないことを確認する 必要ならばもう一度調整し直します。
- 7. 求心望遠鏡焦点鏡カバーを取り付ける

22.6 測距定数

測距定数 K は出荷検査時に O に調整されています。測距定数はほとんど狂いませんが、万一、ご使用中に 測定値が常に同量の誤差を含む場合や、年に数回は、測距定数 K が O 近くであることを確認してください。 点検は、距離精度の明確な基線を使うか、次の方法で行います。

4

- ・本機とターゲットの設置誤差や視準誤差は、求める測距定数に影響を及ぼします。これらの誤差がないよう、十分ご注意ください。
- ・器械高と視準高が同じ高さになるように設置してください。平坦な場所がない場合には、自動レベルを使用して、同じ高さにします。

▶ 手 順 点検

- 本機と反射ターゲットを設置する 約100mの距離をとることのできる平坦な場所を探 し、本機を据え付けた位置をA点とし、約100m 離して反射プリズムを据え付けてB点とします。 ABの中間をC点とします。
- 精密測定で水平距離 AB を 10 回測定し、平均値 を求める
- 3. C 点に本機を、A 点に反射ターゲットを据え付け る

- 4. 精密測定で水平距離 CA と CB をそれぞれ 10 回 測定し、それぞれ平均値を求める
- 5. 測距定数 K を計算する 計算式: K = AB - (CA + CB)
- **6. 手順の1~5を2~3回繰り返す** 測距定数Kが±3mm以内であれば、調整は不要です。
 この範囲を越えた場合は、最寄りの営業窓口にご連絡ください。

22.7 レーザー求心(特別付属品)

点検・調整は、調整用ターゲットを使用して行います。調整用ターゲットは次ページの図を拡大(または縮 小)コピーして作成してください。

▶ 手 順 点検

- 本機を整準して、レーザー求心光を ON にする。
 ごず「8.2 整準作業」
- 本体上部を水平方向に回転させ、レーザー求心光の回転中心がターゲットの中心となるようにターゲットを置く。
 - ・レーザー求心光が十字線の中央からずれていなけ れば調整不要です。
 - ・レーザー求心光が中央からずれている場合は、次 の調整を行ってください。 円の外側で軌跡を描くような場合は、最寄りの営 業窓口にご相談ください。

▶ 手 順 調整

- 調整ねじキャップを反時計回りに回して、取りは ずす
- 2. レーザー求心光を ON にする
- 3. 現在のレーザー求心光の位置(イ)を確認する
- 4. 本体上部を180°回転させ、レーザー求心光の 位置(ロ)を確認する
 2点のレーザー求心光位置を結んだ中央にレーザー 求心光がくるように調整をします。
- 5. 調整の目標位置を確認する 目標位置にターゲットの中心を合わせてターゲット を置きます。 ずれ量は4つの微調整ねじで調整します。

4

- ・微調整ねじは締め付けすぎないようにしてください。
- ・調整ねじは時計方向に回すと締め付けます。

6. 上下方向の調整をする

- レーザー求心光が図の上半分(下半分)にある場合 は、
- ①上と下の微調整ねじに、それぞれ1本ずつ六角棒 スパナを使用します。
- ②上(下)の微調整ねじを少しゆるめ、下(上)の 微調整ねじを同量だけ締めます。レーザー求心光 がターゲットの横線上に来るようにします。
- 7. 左右方向の調整をする

レーザー求心光が図の右半分(左半分)にある場合 は、

- ①右と左の微調整ねじに、それぞれ1本ずつ六角棒 スパナを使用します。
- ②右(左)の微調整ねじを少しゆるめ、左(右)の 微調整ねじを同量だけ締めます。レーザー求心光 がターゲットの十字線の中央へくるようにします。

ことを確認してください。

9. 調整ねじキャップを取り付ける

備考

・調整ねじを正面に向けたとき、ねじを締めると レーザー光は下記の方向へ移動します。

23.電源システム

本機の電源は以下のような組み合わせでご使用ください。

4

- ・以下の組み合わせ以外では絶対に使用しないでください。機械が破損するおそれがあります。
- ・バッテリーや充電器を使用するときは、それぞれの取扱説明書をよく読んでお使いください。

備考

・本機をお使いになる国や地域により、適応する電源ケーブルが異なります。詳しくは営業窓口にお問い合わせください。

24.ターゲットシステム

測定の目的に合わせてターゲットを選択することができるよう、各種ターゲットが用意されています。ター ゲットシステムはすべて特別付属品です。

4

- ・ターゲットは本機にほぼ正対させてお使いください。
- ・反射プリズムにはそれぞれプリズム定数があります。反射プリズムを取り替えるときは、プリスム定数補 正値も変更してください。
- 反射プリズムシステム(APシリーズ)
 本機に適したシステムをお使いください。
 右のイラストは一例です。
 プリズムやその付属品はすべて標準ねじを使用しておりますので、組み合わせが自在です。
- コンパクト反射プリズムセット(CPS11P) CP01、CP11、CP31、CP32、CP51 からなるシ ステムです。
- ピンポールプリズム (OR1PA)
- 反射シート(RS シリーズ)
- 2 点ターゲット (2RT500-K)
 オフセット2点測定に使用します。

● 機械高アダプター(AP41)

・機械高アダプターは、2本の固定ねじを使って高さ を調整することができます。本機の場合は、機械 高調整窓に機械高「236」(mm)を出してご使用 ください。

ねじをゆるめ(①)、反時計方向に回します(②)。 ③の部分を上下させて、求める機械高を調整窓に表 示させたら、時計方向に回して(④)ねじを締めま す(⑤)。

・機械高アダプターの気泡管は、以下の方法で点検・ 調整をしてください。

- 1. 機械高アダプターを整準台に取り付ける
- 2. 整準作業をして横気泡管の気泡の位置を確認する

- 3. さらに機械高アダプターを180°回転させ、気 泡の位置を点検する 気泡が中央からずれていなければ調整は不要です。 気泡が中央からずれている場合は次の調整を行い ます。
- 4. 気泡のずれた量の1/2を整準ねじCで戻す
- 5. 残りの1/2のずれを、調整ピンで横気泡管調 整ナットを回して戻す 反時計回りに横気泡管調整ナットを回すと、気泡 は同じ方向へ移動します。
- 6. 機械高アダプターを回転させ、どの位置でも気泡 が中央に来るように調整する 調整を繰り返しても気泡が中央に来ない場合には、 最寄りの営業担当にご連絡ください。
 - ・機械高アダプターの求心望遠鏡は、求心望遠鏡と
 同様の方法で調整してください。

 「了「22.5 求心望遠鏡」
- 整準台(TR-101/102 シリーズ) プリズム用整準台の円形気泡管は、円形気泡管と同様の方法で調整してください。

 『
 『
 22.1 円形気泡管」

25.付属品

標準品(一部)と特別付属品の概要と使い方は以下のとおりです。

次の項目については別の章で説明されています。 **〔〕** 電源とターゲット「23. 電源システム」、「24. ターゲットシステム」

● 垂球(特別付属品)

風のない日は付属の垂球による据え付け・求心作業 も行うことができます。垂球についている紐を伸ば して図のようにS字型に通し、適当な長さにして定 心かんについているフックにつるしてご使用くださ い。

● 棒磁石(CP7)(特別付属品)

棒磁石取り付け部に、棒磁石を差し込んで、クラン プねじをゆるめてから、本体上部を回して指針を指 標の間に挟み込むようにします。この位置で望遠鏡 正位の視準方向が磁北の目安となります。使用後 は、クランプねじを締め、棒磁石を取り付け部から はずしてください。

4

・棒磁石は、周囲の磁気や金属の影響を受けますの で、正確な磁北を決定することはできません。棒 磁石が示す磁北を測量の際の基準として使用しな いでください。

● 接眼レンズ (EL7) (特別付属品) 倍率:40倍 視野:1°20'

 ● ダイアゴナルアイピース(DE27)(特別付属品) ダイアゴナルアイピースは、天頂付近の観測、狭い 場所での観測に便利です。
 倍率:30倍
 本機の本体ハンドルをはずしてから、取り付けつま みをゆるめて望遠鏡接眼レンズをはずします。ダイ アゴナルアイピースをねじ込んで取り付けます。
 ① アハンドルの取りはずし方:「4.製品概要」の「ハ ンドル」

4

・ダイアゴナルアイピースを取り付けると、望遠鏡 は1回転しません。望遠鏡が機械に接触しないよ うにご注意ください。

● 太陽フィルター(OF3A)(特別付属品)

太陽観測を行うときに、観測者の目と機械の内部を 保護するため、対物レンズに取り付けます。取り付 けたままフィルター部分をはね上げることができま す。

#

・太陽フィルターを取り付けると、望遠鏡は1回転しません。望遠鏡が機械に接触しないようにご注意ください。

● インターフェースケーブル(特別付属品)

ホストコンピューターと本機を接続するケーブルです。

ケーブル	備考
DOC210	ピン No. および信号レベル:RS232C 規格準拠
	D-Sub コネクター:9pin メス

「 FX-203/205/205F 」の記述のないものは共通です。 特に記述のない限り「 FX-205 」は「 FX-205/205F 」を意味します。

望遠鏡

```
全長
                        171mm
有効径
                        45mm (EDM: 48mm)
倍率
                        30倍
                        正像
像
分解力
                        2.5
                        1° 30′
視野
                               (26m / 1,000m)
                        1.3m
最短合焦距離
十字線照明装置(明るさ)
                        5段階調整
測角部
                        アブソリュート・ロータリーエンコーダー方式
測定方式
検出方式
  FX-203
                        対向検出
  FX-205
                        片側検出
最小表示
                        1″ / 5″
  FX-203
                        5″ / 10″
  FX-205
精度
                        3″
  FX-203
                        5″
  FX-205
   (JIS B 7912-3:2006 準拠) (JSIMA 101:2016 準拠)
 コリメーション補正
                        ON / OFF (選択可)
測角モード
  水平角
                        右回り/左回り(選択可)
  鉛直角
                        天頂 0° / 水平 0° / 水平 ±90° / 勾配(%)(選択可)
傾斜補正部
                        液体式(2軸)
方式
最小表示
                        1″
傾斜補正範囲
                        ±6′
傾斜補正モード
                        鉛直角と水平角を補正/鉛直角のみを補正/補正なし(選択可)
チルトオフセット
                        変更可
測距部
測定方式
                        位相差測定方式
                        赤色レーザーダイオード 690nm
光源
                        クラス 3R(JIS C 6802:2014)
                        (プリズム・反射シート設定時の射出量はクラス1相当 JIS C 6802:
                        2014)
                        (当社製反射プリズム・反射ターゲット使用、気象条件通常時*<sup>1</sup>/
測定可能範囲
                        ()内は気象条件良好時<sup>*2</sup>)
   ピンポールプリズム OR1PA *3:
                         1.3 \sim 500 \mathrm{m}
   コンパクト反射プリズム CP01 *3:1.3~2,500m
  標準反射プリズム AP01AR×1*3
                        : 1.3 ~ 5.000m
                          (1.3~6,000m) *2
  反射シート RS90N-K * 4
                        : 1.3 \sim 500 \text{m}
                          1.3 ~ 300m * 5
  反射シート RS50N-K * 4
                        : 1.3~300m
                          1.3 \sim 180 \text{m} * 5
  反射シート RS10N-K *4
                        : 1.3~100m
                          1.3 \sim 60 \text{m}^{*5}
   ノンプリズム(白色面)
                        : 0.3 ~ 800m * 6
                          (0.3~1000m) *2, *7
   プリズム(トラッキング測定時): 1.3~1000m
   反射シート (トラッキング測定時)*4
                        : 1.3~350m
                          1.3~210m * 5
```

ノンプリズム(白色面)(トラッキング測定時、路面測定時)*6 : $0.3 \sim 300 \text{m}$ 最小表示 : 0.0001m/0.001m (選択可) 精密測定 : 0.0001m/0.001m (選択可) 高速測定 トラッキング測定/路面測定 : 0.001m/0.01m (選択可) 最大斜距離表示 (トラッキング測定をのぞく) : 9,600.000m プリズム、反射シート ノンプリズム : 1,200.000m (トラッキング測定) プリズム、反射シート : 1,280.000m ノンプリズム : 768.000m 精度(Dは測定距離、単位はmm)(気象条件通常時*1) (プリズム使用時)*3 : (1.5 + 2ppm×D) mm *8, *10 精密測定 $(5 + 2ppm \times D) mm$ 高速測定 (反射シート使用時)*4 精密測定 : (2 + 2ppm×D) mm $(5 + 2ppm \times D) mm$ 高速測定 *6 (ノンプリ(白色面)使用時) : (2 + 2ppm×D) mm (0.3 ~ 200m) *9 精密測定 (5 + 10ppm×D) mm (200 超~ 350m) (10 + 10ppm×D) mm (350 超~1000m) : (6 + 2ppm×D) mm (0.3 ~ 200m) *9 高速測定 (8 + 10ppm×D) mm (200 超~350m) (15 + 10ppm×D) mm (350 超~1000m) 精密連続測定/精密平均測定/精密単回測定/高速単回測定/高速連 測距モード 続測定/トラッキング測定/路面測定(ノンプリズム時)(選択可) 測定時間(気象条件良好時*2,補正なし,斜距離,絞り適正時の最短測定時間) 精密測定 : 初回 1.5 秒以下、その後 0.9 秒以下 : 初回 1.3 秒以下、その後 0.6 秒以下 高速測定 : 初回 1.3 秒以下、その後 0.4 秒以下 トラッキング測定 気象補正 気温入力範囲 : - 35~60℃(0.1℃単位) 気圧入力範囲 : 500~1.400hPa (0.1hPa 単位) 375~1,050mmHg (0.1mmHg 単位) : 0~100% (0.1% 単位) 湿度入力範囲 : - 499~499ppm (0.1ppm 単位) ppm 入力範囲 プリズム定数補正 - 99~99mm (0.1mm 単位) (ノンプリズム測定選択時:0mm 固定) 球差・気差補正 なし/あり(K = 0.142)/あり(K = 0.20)(選択可) *1: 気象条件通常時:もやがわずかで視程が約 20km、適度な日差しで、かげろうが弱い *2: 気象条件良好時:もやがなく視程が約 40km、くもっていてかげろうがない *3:10m以下の測定ではプリズムと正対させること *4: 測定可能範囲は、測距光が反射シートに対し上下左右 30° 以内で当たっている時の値です。 *5:50~60℃での測定時 *6: 測定可能範囲および測定精度は、KODAK Gray Card の白色面(反射率 90%)、測定画照度が 5,000lx 以下の場合で、測距光が白色面に正対して当たっている時の値です。 *7:測定可能範囲および測定精度は、KODAK Gray Card の白色面(反射率 90%)、測定画照度が 500lx 以下の場合で、測距光が白色面に正対して当たっている時の値です。(800m 以上) *6、7:測定対象物、気象条件、観測条件などにより変わることがあります。 *8: 測定距離 1.3~2m では(2+2ppm×D) mm *9: 測定距離 0.3 ~ 0.66m 以下では(5+2ppm×D)mm

* 10 : JIS B 7912-4 : 2006

ガイドライト 光源	発光ダイオード(LED)(赤 626nm /緑 524nm)
視認可能距離 視野範囲	1.3 ~ 150m(気象条件:通常時 * ¹) 上下左右 ±4° (7m / 100m)
中心エリア視認幅 明るさ	4′ (0.12m / 100m) 3 段階(明るい/普通/暗い)
内部メモリー メモリー容量	1GB(プログラム領域を含む)
対応外部メモリー	USB フラッシュメモリー
通信部	
データ入出力 USB	非同期シリアル、RS232C 規格準拠 USB2.0、ホスト(Type A)、クライアント(Type mini B)
Bluetooth 無線技術	
通信万式 変調方式	GFSK
周波数 対応プロファイル	2.402 ~ 2.48GHz SPP
送信出力	
・・・・・ 一・通信機器間付近一帯に障害 除く	「物かなく、電波発信・奶害する施設や単かはとんとない場合で雨大を
* 12 : 接続する <i>Bluetooth</i> 機器	の使用によっては、通信距離が短くなることがあります。
標準バッテリー 連続使用時間(20℃)	BDC72 リチワムイオン電池
測距測角(精密単回測定で 30 ⁵ BDC72	砂ごとに測定): : 約 20 時間
電源監視機能(残量) 電源自動 OFF 機能	4 段階 操作停止から(5 分/10 分/15 分/30 分)後に自動的に OFF / なし(選択可)
バッテリー(BDC72)	
公称電圧 容量	: 7.2V : 5.986mAb
古述 寸法 質量	: 40(W)×70 (D)×40(H)mm : 約 220g
充電器 (CDC77)	
入力電圧 充電時間(25 ℃、バッテリー: BDC72	 : AC100 ~ 240V 2 個同時充電時) : 約 8 時間(低温/高温時には、記載の時間以上かかることがありま
充電温度範囲	9) 0 ∼ 40 °C
保存温度範囲 寸法 質量	-20 ~ 65 ℃ 94(W)×102(D)×36(H)mm 約 250g
諸般	
OS 表示部	Windows Embedded Compact 7 3.5 型 QVGA 透過 TFT カラー液晶 バックライトLED 照明、0 ~ 8 段階調整可+自動 タッチパネル抵抗感圧式アナログタイプ

キーボード 全 29 キー キー照明 あり トリガーキー あり (側板部) 気泡管感度 : 10′ / 2mm : 6′ /内円上(グラフィック) ±6′30″(デジタル) 円形気泡管 電子気泡管 求心望遠鏡 像 : 正像 倍率 : 3倍 : 0.3m (底板より) 最短合焦距離 レーザー求心(オプション機能) : レーザーダイオード 光源 クラス2 (JIS C 6802:2014) 波長 / 射出出力 : 635nm/0.99mW以下 ビーム精度 : 1.0mm 以下(三脚脚頭高さ 1.3m) スポット径 : Ø3mm 以下 :5段階 輝度調整機能 自動 OFF 機能 : あり (5分) 水平/望遠鏡微動装置 1段階 カレンダークロック機能 あり レーザー照準機能 ON / OFF (選択可) -20~60°C(結露しないこと)*13 使用温度範囲 保存温度範囲 -30~70°C(結露しないこと) IP65 (JIS C 0920-2003) 防塵・防水性能 機械高 192.5mm(整準台取付面より) 236mm +5/-3mm(整準台 TR-102 使用時、センタリング整準タイ プ、三脚取付面より) 191 (W) ×174 (D) ×348 (H) mm (片側表示、突起物含まず) 本体寸法 191 (W) ×190 (D) ×348 (H) mm (両側表示、突起物含まず) 本体質量 5.7kg(着脱式)(BDC72と整準台を含む) 5.8kg(センタリング式)(BDC72と整準台を含む)

*13:50~60℃では直射日光が当たらないこと

27.解説

27.1 正反視準による高度目盛のリセット

本機の高度目盛の0インデックスはほとんど狂いませんが、特に高い精度で角度測定をしたい場合には、以 下の手順で0インデックスの狂いを消去することができます。

4

・電源を OFF にすると、高度目盛のリセットは無効になります。もう一度やり直してください。

▶ 手 順

 観測条件の「Vマニュアル」の設定を変更する 設定モードで「観測条件」を選択し、「Vマニュア ル」を「Yes」に設定します。
 ごデ「20.1 観測条件」

< V マニュアル 0 セット > が表示されます。

2. 注意深く機械本体を整準する

- 3. 水平方向に約 30m ほどの距離にある明瞭な目標 物を望遠鏡「正」で正確に視準する 目標物を視準して【OK】を押します。 「反データセット」が表示され、鉛直角には「V2」 が表示されます。
- 4. 望遠鏡を「反」の位置にし、同じ目標を正確に視準する
 視準後【OK】を押します。
 鉛直角に角度が表示されます。

以上で高度目盛のリセットは終了です。

V7ニュアルOセット		×
反データセット		•77
		0
		Maa
		×
鉛直角	V2	9.0
水平角	295 * 03'37"	_1
		7
	OK	

27.2 両差補正について

本機は、斜距離データを水平距離、比高に換算するとき、気差・球差(両方あわせて両差と呼ぶ)を自動的に補正しています。

● 両差補正を考慮した距離の計算式

水平距離、比高換算は次の式によります。

水平距離 D=AC(α) 比高 Z=BC(α) D =L{cos α - (2 θ - γ)sin α } Z =L{sin α +(θ - γ)cos α }

θ=L・cosα/2R: 球差補正項
 γ=K・Lcosα/2R: 気差補正項
 K =0.142 または 0.2: 大気の屈折係数
 R =6371km: 地球の半径
 α : 鉛直角(水平からの角度)
 L : 斜距離

両差補正を停止または、大気の屈折係数 K の値を変更したいときは、「20.1 観測条件」を参照して設定して ください。

28.文字入力表

入力モードの数字入力以外が選択されているときは、1つのキーに複数の文字が割り当てられており、キー を押す回数によって表示される文字が切り替わります。 € 文字入力モードの変更:「5.1 基本のキー操作」

▶ 本機の文字入力表

+-	かな(カタカナ表示の例)	英文字(大文字の例)	数字
(7)	アイウエオァィゥェォ	ABC	7
(8)	カキクケコ	DEF	8
(9)	サシスセソ	GHI	9
(4)	タチツテトッ	JKL	4
(5)	ナニヌネノ	MNO	5
(6)	ハヒフヘホ	PQR	6
(1)	マミムメモ	STU	1
(2)	ヤユヨヤュョ	VWX	2
(3)	ラリルレロ	Y Z !	3
(0)	ワヲン	/_&	0
(•)	N 0	*?\$	•
(+/-)	_	# % @	- +

29.索引

В		
-	<i>Bluetooth</i> アドレス	8
E	EDM 絞り	8
V	V モード(鉛直角表示方法)	5
い	ノーシャニノブ加田	6
お	1 ニシャ ノ1 ス処理	⁰
か	オートパワーオフ	8
J.	ガイドライト1	0
き	キーライト	88
	機械高マーク	9
	気象補正係数	0 6
け		
.,	傾斜角補正	5
Ζ		_
	後方交会の計算の手順	;9 :0
	後方父会を行つ上での汪恴	,9
	コリメーション補止	Ö
し し		_
	視差をなくす	.2
	が山頂C 昭准史 1	0
+		0
9		
	水平距離と 水平色の部字支注	5 :0
_	小平月の設定方法	9
τ		~
_	電源 OFF できないとき	6
と		
	投影補正	6
	トラッキング最小表示	6
	トリカーキー	0
は		
		8
	バックライトの設定	67
ひ		
	日付と時間10	1
ふ		
	プリズム定数補正値8	9
ħ.		
	レーザー照準オフ	88
	レーザー照準機能	0
	レジューム機能	5

トプコンホームページ <u>https://www.topcon.co.jp</u> 株式会社 **トフ**・コン 本社 〒174-8580 東京都板橋区蓮沼町75-1 株式会社 **トフ・コンソキア ポジショニングジャハ・ン** 本社 〒174-8580 東京都板橋区蓮沼町75-1 ※ 当社連絡先詳細は、当社ホームページをご覧ください。

> © 2020 TOPCON CORPORATION ALL RIGHTS RESERVED 無断複製及び転載を禁ず